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Abstract: Rice is the most important food security crop in Asia. Information on its seasonal 

extent forms part of the national accounting of many Asian countries. Synthetic Aperture 

Radar (SAR) imagery is highly suitable for detecting lowland rice, especially in tropical 

and subtropical regions, where pervasive cloud cover in the rainy seasons precludes the use 

of optical imagery. Here, we present a simple, robust, rule-based classification for mapping 

rice area with regularly acquired, multi-temporal, X-band, HH-polarized SAR imagery 

and site-specific parameters for classification. The rules for rice detection are based on the 

well-studied temporal signature of rice from SAR backscatter and its relationship with crop 

stages. We also present a procedure for estimating the parameters based on “temporal feature 

descriptors” that concisely characterize the key information in the rice signatures in monitored 

field locations within each site. We demonstrate the robustness of the approach on a very 

large dataset. A total of 127 images across 13 footprints in six countries in Asia were obtained 

between October 2012, and April 2014, covering 4.78 m ha. More than 1900 in-season site 

visits were conducted across 228 monitoring locations in the footprints for classification 

purposes, and more than 1300 field observations were made for accuracy assessment. Some 

1.6 m ha of rice were mapped with classification accuracies from 85% to 95% based on the 

parameters that were closely related to the observed temporal feature descriptors derived for 
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each site. The 13 sites capture much of the diversity in water management, crop establishment 

and maturity in South and Southeast Asia. The study demonstrates the feasibility of rice 

detection at the national scale using multi-temporal SAR imagery with robust classification 

methods and parameters that are based on the knowledge of the temporal dynamics of the 

rice crop. We highlight the need for the development of an open-access library of temporal 

signatures, further investigation into temporal feature descriptors and better ancillary data to 

reduce the risk of misclassification with surfaces that have temporal backscatter dynamics 

similar to those of rice. We conclude with observations on the need to define appropriate SAR 

acquisition plans to support policies and decisions related to food security. 

Keywords: rice; food security; SAR; Asia; COSMO Skymed; TerraSAR-X 

 

1. Introduction 

1.1. The Case for Synthetic Aperture Radar to Map Rice 

Rice is the most important crop for food security in Asia [1]. Despite rapid urbanization and 

diversification in consumption patterns in Asian countries, rice still accounts for 31% of the calorific 

intake and is by far the largest single source of calories for more than 3.7 billion people [2,3]. Reliable 

and regular subnational information on the area under production is an essential part of many countries’ 

national accounting process, but statistical methods cannot always meet the needs of food security 

research and policy [4,5]. Nevertheless, this same information is the basis of policy decisions related to 

imports, exports and prices, which directly impact food security, especially amongst the poor [6–8]. 

Remote sensing promises scalable, low-cost and unbiased estimates of rice area to support, augment, 

improve or even replace survey and statistical methods [5]. However, there are technical challenges for 

the development of national-scale, operational, remote sensing-based rice crop information systems 

in Asia:  

(i) More than 70% of the production is during the monsoon or rainy season [9], in which cloud 

cover is extensive and pervasive [10]. 

(ii) Rice can be grown under a wide range of conditions and environments and, thus, is found in all 

corners of Asia [1,9].  

(iii) Rice cultivation is dominated by smallholders with field (paddy) sizes that are usually less than 

two hectares and, in many cases, less than one hectare [11].  

(iv) These paddies can form large contiguous areas, especially in coastal areas and deltas [4,9], but 

the tropical and subtropical climate in much of Asia means that rice can be cultivated with 

diverse cropping calendars and practices over very short distances [1,12].  

The issue of cloud cover (i) can be addressed by using Synthetic Aperture Radar (SAR) imagery,  

and there is substantial literature on the suitability of SAR for rice crop mapping in the region (see 

Section 1.2). Optical images can complement SAR, but they cannot be relied upon as the main information 

source. Even with multi-temporal compositing, many consecutive days or weeks can be lost, which is 
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particularly problematic for algorithms that rely on the detection of agronomic flooding at the start of the 

growing season [4,13]. The wide geographic distribution of rice across Asia (i) necessitates wall-to-wall 

coverage to adequately capture the 144 million hectares [2] of rice area and suggests that automated or 

low-level supervised processing is required to do this. Automated processing would also be suited to 

low-cost cloud computing platforms and low-level operator supervision, which could offset the common 

bottlenecks of infrastructure, bandwidth and human capacity in emerging economies. The wide range of 

practices and environments (ii) means that rice detection algorithms should be generalizable and robust [13]. 

Such methods should show high skill for irrigated and rainfed rice, for short (<110 day), medium  

(110–130 day) and long (>130 day) maturities [1], and for different establishment practices, such as 

direct seeding or transplanting. The spatial complexity (iii) of rice environments requires high-resolution 

imagery, and the temporal complexity (iv) requires high-frequency acquisitions across many months of 

the year.  

In short, the remote-sensing requirements are non-trivial, and they go some way towards explaining 

the dearth of operational rice crop monitoring systems. However, recent and planned launches of SAR 

sensors coupled with state-of-the-art automated processing can provide sustainable solutions to this 

challenge to map and monitor one of the world’s most important crops.  

This aim of this paper is to develop and test a rice area mapping method across multiple sites based 

on the knowledge of the temporal development of the rice crop under different conditions and its relation 

to backscatter. Specifically, the novelty in this paper is the development of a rule-based classification 

approach and parameter selection approach in which the rules and parameters are derived from agronomic 

knowledge of the rice crop and its management. Thus, the rules and parameters can be easily understood 

and fine-tuned by users using site-specific knowledge. The purpose here is not to derive the best possible 

rice map at each site through intensive calibration or large-scale fieldwork, but to introduce a simple 

approach that is robust, repeatable and suitable for rapid rice mapping over large extents with cost-effective 

field work.  

The overarching goal is to demonstrate that SAR-based operational mapping of rice crops across a 

diverse range of environments is possible based on the increasing availability of multi-temporal SAR 

data. The paper is a timely contribution to remote-sensing applications for food security, since it presents 

a method to derive sufficiently accurate rice area maps under different conditions that are typical of the 

diversity of rice environments in Asia. Our target audience goes beyond the research community and 

includes the growing community of stakeholders that have a vested interest in operational remote 

sensing-based systems for food security applications. 

We first summarize past research on SAR applications for rice mapping, justify our choice of 

algorithm and outline the comprehensive geographic scope of this study. 

1.2. A Summary of SAR Research and Applications for Rice Mapping 

SAR data have a proven ability to detect lowland rice systems (both irrigated and rainfed) through 

the unique temporal signature of the backscatter coefficient (also termed sigma naught or σ°) exhibited 

by the crop. In the past three decades, a significant number of publications have been dedicated to  

better understanding this relationship and applying it to rice detection and rice monitoring [14–23].  

In summary, these studies have shown that: 
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− Lower frequencies (L- and C-band) penetrate deeper into the rice plant than higher frequencies, 

while only higher frequencies (X-band) interact with grain water content and grain weight 

sufficiently to show a dual-peak signal in σ° during the rice season [15,16,18,19].  

− The maximum σ° date at the X-band precedes those of the C- and L-band. Moreover, short 

wavelengths (X-, Ka-, Ku-band), especially at large incident angles, are sensitive enough to 

detect even very small rice seedlings just after transplanting [15,19]. 

− The correlation between σ° and rice biophysical parameters shows that lower frequencies are 

more closely related to total fresh weight, leaf area index (LAI) and plant height than  

other parameters [15,19]. 

− Although σ° from X-band is poorly correlated with LAI, it is best correlated with panicle biomass. 

This means that the X-band can be used for a direct assessment of rice grain yield [22,23].  

− When using C-band HV polarization, σ° is most strongly correlated with the fraction of absorbed 

photosynthetically-active radiation (fAPAR), which is strongly determined by the amount and 

structure of leaf elements in a canopy. This means that C-band σ° can provide information 

equivalent to the normalized difference vegetation index (NDVI) [23]. 

− The σ° from VV polarization increases only during the vegetative stage; it is quite stable at 

the reproductive stage, and it decreases at the ripening stage because of canopy 

attenuation [14,18]. 

− The σ° from HH polarization increases at the reproductive stage and is quite stable at the ripening 

stage. The temporal trend of σ° from HV is similar to HH [18]. 

− The HH/VV polarization ratio at the C- and L-band decreases significantly throughout the season 

and is thus a good descriptor of rice plant age [18].  

− The frequency ratios for HH and VV (C-VV/L-VV and C-HH/L-HH) are significantly lower in 

the latter part of the rice season when thick vegetation canopy hampers wave penetration [18]. 

− For X-band, the HH/VV polarization ratio continuously changes as a function of phenology 

during the vegetative and reproductive stages [20].  

− For X-band, the HH-VV phase difference is sensitive to early rice plant emergence. Moreover, 

the use of four polarimetric features derived from coherence coplanar dual-polarization X-band 

enables the estimation of five phenological stages from a single date scene [15,20,21].  

It is clear from the literature that well-understood relationships exist between rice crop characteristics 

and backscatter coefficients from different wavelengths, and these relationships have been used to derive 

different types of algorithms for estimating rice crop characteristics from SAR data. In particular, rice 

signature interpretation has been proposed based on theoretical models [14,18], and supervised 

classification algorithms [16] or image ratio methods have been used for rice mapping purposes [14,24]. 

Another approach for sparse time series is to extract temporal features from the data, such as the minimum, 

maximum or range of values on a pixel-by-pixel basis, relate those to the known temporal dynamics of 

the rice crop and use that knowledge to classify areas as rice or non-rice [25]. All of these approaches 

have been demonstrated successfully in the literature. Theoretical models, based on radiative transfer 

equations, are particularly useful for understanding the complex backscattering mechanisms; however, 

they require a significant amount of input parameters that are tuned to the surrounding conditions at the 

test site. Supervised classifiers rely on a substantial set of good-quality training data to ensure a good 
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classification, and there is a risk of over-fitting the classification. Image ratio approaches that divide the 

intensity values from pairs of images are an efficient way to extract information on rice crop dynamics 

and are particularly useful when the SAR time series has few images or sparse images through the rice 

season. Temporal feature extraction from sparse SAR time series meets one of our aims, but the method 

needs to be adapted to use more comprehensive multi-temporal information for rice area mapping.  

A further consideration in the choice of algorithm in this study is that very few studies have tested 

the robustness of rice detection algorithms across a range of conditions and a range of countries. Varietal 

choice, crop establishment methods and crop management practices can have a significant effect on the 

structure of both plant and canopy, the duration and growth rate of the plant and water content. This 

contextual information on the characteristics of different rice cropping systems must be considered in 

the development of a robust rice detection algorithm for application over diverse rice environments.  

For this reason, we propose a rule-based classification approach to rice area mapping that is based on 

a small number of rules and parameters that can be quickly fine-tuned from site to site and season to 

season. These rules and parameters are derived from the above-noted relationships between backscatter 

and the development of the rice crop, and they build on the temporal feature approach [25] by exploiting 

regularly acquired, multi-temporal SAR information. Conceptually, the classification approach is based 

on rules that are agronomically meaningful and, thus, easily understood and easily fine-tuned based on 

the local knowledge of the rice-growing environment and the key rice-growing stages. 

1.3. Rice Growing Stages and Key Characteristics for SAR Based Detection 

Rice in tropical and subtropical Asia is mainly cultivated in irrigated or lowland rainfed conditions. 

Rice varieties range in duration from 90 to more than 150 days and with three main crop stages: vegetative 

(from germination to panicle initiation, from 45 to 100 days), reproductive (from panicle initiation to 

flowering, around 35 days) and maturity (from flowering to mature grain, around 30 days) (Figure 1). 

The following aspects contribute to the change in space occupied by the rice plants within  

a three-dimensional space: (1) appearances and growth of leaves from the main stem (culm) and tillers; 

(2) stem development and elongation; (3) tillering, defined as the production of stems from rice plants;  

(4) leaf senescence; and (5) panicle and grain development.  

Rice leaves appear approximately every four days during the vegetative phase and every seven days 

during the reproductive phase [26]. Tillering begins at around the three- to four-leaf stage or 

approximately 10 days after emergence. Leaf production progresses from the bottom to the top part of 

the canopy, with the later-appearing leaf blades tending to be greater in length. Vertical growth of rice 

plants in the early growth stages (early tillering phase) is mainly contributed to by the development of 

new nodes along the main stem. At the later stage of the tillering phase, towards the panicle initiation 

stage, stem elongation begins and contributes to a rapid increase in the vertical expansion of the rice 

canopy. Leaf senescence begins at around heading and contributes to the declining leaf area index. 

In most cases, the rice leaf area index peaks at around heading. At the heading stage, panicle extension 

occurs when panicle tips emerge from the base of the last leaf, which is known as the flag leaf. 

Subsequently, panicles will grow in length and volume and will bear developing grains. By the maturity 

stage, individual panicles for typical modern, short- to medium-duration rice varieties occupy about 20% 

of the space in the top layer of the canopy. However, when arranged along with panicles from all rice 
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tillers, panicles and grains together occupy about 30% of the top layer of the canopy. For typical plant 

heights of around 100 cm, panicle and grain occupy about 20 cm of the top layer in the canopy. During 

the ripening stage of grain development, lasting 25–35 days, the overall rice plant’s water content 

decreases [14]. 

Figure 1. Rice crop stages. Image from the International Rice Research Institute  

(IRRI)-Rice Knowledge Bank. 

 

Apart from biology, agronomic management influences biophysical changes in rice plants within  

the three-dimensional space they occupy, mainly because of the different spacing between rice plants. 

In the transplanted system, rice plants are grown in a seedbed for about 20 days, and then, the plants are 

transplanted in a hill configuration at about two plants per hill; a common spacing is 20 × 20 cm, but 

this can vary. Prior to transplanting, the rice field is flooded with water at depths ranging from 2 to  

15 cm [14]. This deliberate agronomic flooding is a key element of most remote-sensing rice detection 

algorithms [13]. After transplanting, the recommended practice is to keep the water level at about 3 cm 

and gradually increase it to 5–10 cm with increasing plant height. With rice established using direct 

seeding, rice seeds are sown at higher density per unit area directly in wet soil or soil with a water level 

of 2–5 cm [14]. Because of higher population density under direct seeding, the production of tillers is 

suppressed [26], and thus, the increase in leaf volume within the canopy is mostly contributed to by leaf 

appearance and growth from the main culms. The water level with the direct-seeding system is kept low 

until the plants are large enough to withstand shallow flooding at the three- to four-leaf stage. Keeping 

the water level low during the first 10 days after transplanting or 21 days of direct seeding is 

recommended for golden snail management, whereas, until about the same time, keeping ample water 

level in the field is important to suppress weeds.  

1.4. An International Comparison of X-Band SAR Data for Rice Mapping 

The RIICE project—Remote sensing-based Information and Insurance for Crops in Emerging 

economies—tested SAR-based mapping of rice area across six countries (India, Thailand, Cambodia, 

Vietnam, Indonesia and the Philippines) between late 2012 and early 2014 (Figure 2). These countries 

account for 51.5% of the world’s rice area and 45.9% of production, and they include both rice net 
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exporters (Thailand, Vietnam, India and Cambodia) and rice net importers (Indonesia and 

the Philippines) [2]. These countries are representative of the wide range of geographies, climates 

and crop practices in subtropical and tropical Asian rice systems.  

Figure 2. Location of the 13 SAR footprints in Asia in the RIICE (Remote Sensing-based 

Information and Insurance for Crops in Emerging economies) project. Country names are 

shown only where there are footprints. Numbers refer to the site ID used in Table 1. 

 

This international collaborative effort used multi-temporal X-band SAR data, semi-automated 

processing chains, in-season field monitoring and end-of-season validation points to map rice crops 

across technical demonstrations in six countries (Figure 1). This study uses a greater number of images 

(127) and number of sites (13) and covers a larger area (4.78 m ha) than any previous assessment of  

SAR-based remote sensing for rice mapping (Table 1). It is a timely contribution to the literature on the 

use of SAR for large-scale mapping of rice in Asia for food security applications. 

The following sections describe the sites, data, methods and results. The discussion section includes 

our observations on the strengths and weaknesses of this approach and the challenges faced in conducting 

the research. We also suggest some criteria and prerequisites for developing SAR acquisition plans that 

would ensure that remote sensing supports policies for food security, import/export decisions and price 

stabilization for the world’s most important crop.  
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Table 1. SAR data acquisition summary: locations, dates and modes. Further details  

on the acquisitions for each site are included in the Supplemental Information section. CSK, 

COSMO-SkyMed; TSX, TerraSAR-X. 

Site ID Country and Study Site Start and End Dates
# of 

Images
Satellite * 

Scene Center,  

Area (km2) 

Mode, Resolution 

(m) 

Polarization, Angle 

(°) 

1 Cambodia, Takeo 
15 October 2012  

15 April 2013 
12 CSK 

11.16°N–104.83°E, 

1600 
Stripmap, 3 HH, 40 

2 Philippines, Leyte East 
15 May 2013  

20 September 2013 
10 CSK 

11.11°N–124.89°E, 

1600 
Stripmap, 3 HH, 46 

3 Philippines, Leyte West 
12 May 2013  

24 September 2013 
9 CSK 

11.18°N–124.56°E, 

1600 
Stripmap, 3 HH, 48 

4 
Philippines,  

Agusan del Norte 

27 May 2013  

2 October 2013 
9 CSK 

8.93°N–125.59°E, 

1600 
Stripmap, 3 HH, 39 

5 
Vietnam,  

Soc Trang 

5 June 2013  

25 September 2013 
8 CSK 

9.60°N–106.09°E, 

1600 
Stripmap, 3 HH, 46 

6 
Vietnam,  

Nam Dinh 

26 May 2013  

17 October 2013 
11 CSK 

20.47°N–106.05°E, 

1600 
Stripmap, 3 HH, 40 

7 Indonesia, Subang 
26 November 2013  

19 April 2014 
9 CSK 

6.55°S–107.66°E, 

1600 
Stripmap, 3 HH, 46 

8 
India, Tamil Nadu, 

Cuddalore 

16 August 2013  

7 January 2014 
10 CSK 

11.74°N–79.56°E, 

1600 
Stripmap, 3 HH, 44 

9 
India, Tamil Nadu, 

Thanjavur 

16 August 13  

26 December 13 
9 CSK 

10.87°N–79.25°E, 

1600 
Stripmap, 3 HH, 41 

10 
India, Tamil Nadu, 

Sivaganga 

18 August 2013  

19 January 2014 
11 TSX 

9.86°N–78.50°E, 

1500 
Stripmap, 3 HH, 44 

11 Thailand, Muang Yang 
27 May 2013  

19 November 2013 
10 CSK 

15.44°N–102.95°E, 

1600 
Stripmap, 3 HH, 43 

12 Thailand, Suphan Buri 
18 June 2013  

24 October 2013 
9 CSK 

14.53°N–100.44°E, 

14,000 
ScanSAR, 15 HH, 45 

13 Philippines, Nueva Ecija 
25 May 2013  

23 September 2013 
10 TSX 

15.71°N–120.75°E, 

15,000 
ScanSAR, 10 HH, 45 

 
Total number of images 

and footprint area 
 127  46,500    

* All acquisitions are in the X-band.  

2. SAR Data, Field Data and Study Sites 

2.1. SAR Data 

Multi-temporal X-band SAR Single Look Complex (SLC) data were obtained from the Italian Space 

Agency (ASI/e-GEOS) and GISTDA (Geo-informatics and Space Technology Development Agency) 

for COSMO-SkyMed (CSK) data and from InfoTerra GmbH for TerraSAR-X (TSX) data. In all cases, 

data were obtained in HH polarization with consistent incidence angles in each multi-temporal stack, 

ranging from 39 to 48 degrees across sites. A large incidence angle is preferred, because (i) wind effects 

on water (in particular, during land preparation prior to transplanting) are significantly decreased, (ii) the 
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dynamic of the radar backscatter is larger and (iii) the spatial resolution is higher. The image acquisition 

dates, locations, mode, pixel size, polarization and incidence angles are shown in Table 1. Image mode, 

extent, pixel size, polarization and incidence angles were constant for each footprint. Full details of the 

acquisitions for each of the 13 sites are included in the Supplemental Information section (Table S1). 

CSK data are available from four X-band HH-SAR satellites with a 3.12-cm wavelength  

and a 16-day revisit period for the same satellite with the same observation angle. We used Stripmap 

mode (3-m resolution) at 10 sites with a footprint of 40 × 40 km and ScanSAR Wideregion mode  

(15-m resolution) at one site with a footprint of 100 × 140 km. Acquisition plans were made using 

one primary satellite from the constellation for each site with backup plans in place for the second, third 

and fourth satellites in the constellation in the event of a cancellation. These backup acquisitions are one, 

four and eight days after the primary acquisition pass. Rapid notification of a cancelation is required to 

change planned field visits to the backup date, but this proved to be challenging to implement consistently 

through the monitoring campaign whenever backups were required.  

TSX is provided by one X-band HH SAR satellite with a 3.11-cm wavelength and 11-day revisit 

period with the same observation angle. We used Stripmap mode (3 m resolution) at one site with 

a footprint of 30 × 50 km and ScanSAR mode (10 m resolution) at one site with a footprint of  

100 × 150 km. No backup plan was implemented for TSX. 

2.2. Field Observations for Calibration of the Rice Detection Algorithm and Map Validation 

Field observations were performed throughout the season in up to 20 paddy fields within each 

footprint. These fields were selected, with the farmers’ consent, prior to the start of the rice season and 

the image acquisition schedule. Observations were made on or as close to the image acquisition date  

as possible, depending on national holidays or other events that prevented easy access to locations. 

Observations included latitude and longitude from handheld GPS receivers, descriptions and photos  

of the status of the field, plant height, water depth, weather conditions, crop stage and leaf area index 

(LAI). The same field data collection protocols were used at all sites. LAI measurements were taken 

only during visits between seedling and flowering stages, and these were recorded non-destructively using 

the same equipment at each site: an AccuPAR LP-80 Ceptometer (Decagon Devices, Inc., Pullman, WA, 

USA). The specific model of the GPS and digital cameras varied across sites. At the end of the season, 

the farmer was interviewed to collect information on the rice variety, water source, crop management 

and establishment practices, as well as inputs, such as pesticide and fertilizer.  

In total, 228 locations were regularly monitored across the 13 footprints, with 1922 separate visits 

made to these locations to collect in-season information on the status of the rice crop, an average of  

8 visits per location and 18 locations per footprint (Table 2). 

A validation exercise was conducted for each footprint to assess the accuracy of the rice classification. 

We first considered the regular sampling grid and random selection of locations as appropriate methods 

to select representative and spatially well-distributed samples. However, these approaches were quickly 

deemed too time consuming and too expensive to apply over 13 sites covering 46,500 km2. For these 

reasons, a rapid land cover appraisal method was adopted to collect land cover information at 

approximately 100 locations throughout each footprint with these points split 50/50 between non-rice 

points and rice points. This conforms to the minimum number of samples per land cover class accounting 
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for both statistical sampling requirements [27] and practical considerations, given the available resources 

and accessibility.  

Table 2. Summary of site visits and observed rice crop characteristics during the 

monitored seasons. 

Site 

ID 

Country, 

Study Site 
Season 

Period 

Covered 

Number of 

Fields, Visits

Crop 

Establishment 

Method 

Variety and Maturity 

(days) 

Water 

Management 
Notes 

1 
Cambodia, 

Takeo 
Dry  

October to 

April 

4 fields,  

20 visits 
Direct seeding IR504 (95) Irrigated  

2 
Philippines, 

Leyte East 
Wet  

May to 

September 

20 fields, 

200 visits 
Transplanting NSIC Rc222 (114) Irrigated 

Typhoon on 8 

November 2013

3 
Philippines, 

Leyte West 
Wet  

May to 

September 

20 fields, 

200 visits 
Transplanting 

NSIC Rc216 (112), 

NSIC Rc238 (110) 
Irrigated  

4 

Philippines, 

Agusan del 

Norte 

Dry  
May to 

October 

18 fields, 

182 visits 

Transplanting 

and direct 

seeding 

PSB Rc18 (123), 

NSIC Rc160 (107), 

NSIC Rc122 (112) 

Irrigated with 

some rainfed 
 

5 
Vietnam,  

Soc Trang 

Summer–

autumn  

June to 

September 

12 fields,  

66 visits 

Transplanting 

and direct 

seeding 

OM6976 (100), 

OM3673 (95), 

ST5 (120),  

OM108-5 (100), 

OM9584-1 (95), 

OM4900 (100) 

Irrigated  

6 
Vietnam,  

Nam Dinh 
Summer  

July to 

November 

20 fields, 

160 visits 
Transplanting 

Tap Giao (125), 

BC 15 (134) 
Irrigated  

7 
Indonesia, 

Subang 
Wet  

November 

to April 

20 fields, 

160 visits 
Transplanting 

Ciherang, Inpari, 

Mekonga, 

Sintanur (115), 

Ketan, IR42 (135) 

Irrigated 

Early drought 

with flood 

event, early 

January 2014 

8 

India,  

Tamil Nadu, 

Cuddalore 

Samba  
mid-July to 

January 

20 fields, 

160 visits 
Transplanting 

CR1009 (160), 

BPT5204 (135), 

White Ponni (130), 

Co 50 (160) 

Irrigated  

9 

India,  

Tamil Nadu, 

Thanjavur 

Samba  
August to 

December 

20 fields,  

162 visits 

Transplanting 

and direct 

seeding 

CR1009 (160), 

BPT5204 (135), 

ADT 50 (160) 

Irrigated  

10 

India,  

Tamil Nadu, 

Sivaganga 

Samba  
September 

to January 

18 fields,  

110 visits 

Transplanting 

and direct 

seeding  

ADT45 (110), 

JGL (100–110), 

ADT36 (110), 

Jothi (110) 

Semi-dry rice 
Moisture stress 

and maturity 

11 
Thailand, 

Muang Yang 
Wet 

May to 

November 

16 fields,  

130 visits 
Direct seeding 

KDML105 (>150), 

RD15 (179), 

RD6 (178) 

Rainfed 

Early drought 

with flood 

event, early 

October 2013 
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Table 2. Cont. 

Site 

ID 

Country, 

Study Site 
Season 

Period 

Covered 

Number of 

Fields, Visits

Crop 

Establishment 

Method 

Variety and Maturity 

(days) 

Water 

Management 
Notes 

12 
Thailand, 

Suphan Buri 
Wet 

June to 

October 

20 fields, 

172 visits 
Direct seeding 

RD31 (115), 

RD47 (112), 

RD41 (115), 

PTT1 (120), 

RD29 (95), 

SPR1 (115), 

PLK2  (92) 

Irrigated  

13 
Philippines, 

Nueva Ecija 
Wet 

July to 

November 

20 fields, 

200 visits 
Transplanting NSIC Rc222 (114) Irrigated  

 

Total number 

of fields and 

visits 

  
228 fields, 

1922 visits 
    

Field staff conducted multi-day journeys through each footprint, following routes based on local 

knowledge of the land cover. GPS coordinates, photos and land cover descriptions were collected at each 

location. These map validation assessments were generally conducted in-season, in the reproductive or 

ripening stage before harvesting, but in some cases, the assessment was conducted post-season; hence, 

rice stubble and farmer surveys were used to confirm that the observed post-harvest situation reflected 

the presence of a rice crop during the monitored season. Locations were chosen such that the land cover 

was homogeneous in a 15-m radius around each GPS point for sites using 3-m resolution imagery and a 

50-m radius for sites using 10-m or 15-m resolution imagery.  

2.3. Study Site Characteristics 

The 13 monitoring sites cover a range of environments, crop establishment methods, water management 

practices and varietal maturities that are typical of rice-growing areas in South and Southeast Asia. We 

do not consider the harvesting method nor residual stubble, since most of the acquisitions and field 

observations stopped before harvest. The footprints cover irrigated and rainfed lowland systems that 

account for more than 90% of the rice-growing area [9]. Deepwater and upland rice account for the 

remaining small proportion of the area and are not represented in this study. Monitoring at 10 sites was 

done in the wet or monsoon season (Sites 2, 3 and 6–13), whereas three sites were monitored in the dry 

season (Sites 1, 4 and 5). Six sites established the rice crop by transplanting (Sites 2, 3, 6–8 and 13); four 

sites had a mixture of transplanting and direct seeding (Sites 4, 5, 9 and 10); and three established the 

crop by direct seeding (Sites 1, 11 and 12). Ten sites were in irrigated areas (Sites 1–3, 5–9, 12 and 13); 

one site was mainly irrigated with some rainfed area (Site 4); one site practiced semi-dry rice, which is 

rainfed at the start of the season and irrigated in later crop stages (Site 10); and one site was purely 

rainfed (Site 11). Varietal maturities ranged from short at one site (Site 1) to a mixture of short to medium 

at two sites (Sites 5 and 10), medium at seven sites (Sites 2–4, 6, 7 and 12), long at two sites (Sites 8 and 

9) and very long at one site (Site 11). Table 2 summarizes the characteristics of the dominant rice systems 
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covered by each footprint, and further details for each site and monitored season are expanded 

upon below. 

Cambodia (Site 1, Takeo): In this area, farmers typically grow short-duration non-photoperiod-sensitive 

varieties (such as IR504) for the dry season, early wet season and recession rice. Improved varieties, 

such as Phka Romduol and local varieties with medium and long growth durations, are grown in the main 

wet season. Monitoring was conducted in four locations (three from Angkor Borey and one in Prey 

Kabas District) during the recession rice of October 2012, to April 2013. Farmers started broadcasting 

their fields as soon as the water receded from October to November. The variety used by farmers in this 

area was mainly IR504. Groundwater was used as supplementary irrigation when there was a lack of 

access to water from river or other irrigation sources. 

Philippines (Sites 2, 3, 4 and 13, Leyte East, Leyte West, Agusan del Norte and Nueva Ecija):  

These sites represent three geographic areas of the country—Luzon, Visayas and Mindanao, 

respectively—characterized by different rice cropping practices. The four municipalities monitored in 

Nueva Ecija were San Jose, Sto. Domingo, Talavera and Aliaga. They were classified as irrigated 

lowland, and they rely mainly on the release of irrigation water from the Upper Pampanga River Integrated 

Irrigation System (UPRIIS). Rice plots of the monitoring locations usually maintain flooded soil 

moisture with a 3–6-cm water level from the vegetative to the reproductive stage. Most of the 20 

monitoring locations have a rice-rice cropping pattern, which was described as planting rice for two 

cropping seasons, wet and dry. Crop establishment during the wet season, 2013, in Nueva Ecija started 

in July. Rice farmers in the monitoring locations mostly planted NSIC Rc 222, an inbred variety with a 

duration of 114 days. This variety was popular because of its high-yielding capacity, resistance to pests and 

resistance to lodging.  

In Leyte, the municipalities were Matag-ob, Kananga and Ormoc City in the west and Dulag, Tolosa, 

Tanauan, Palo, Sta. Fe and Alang-alang in the east. The rice-rice cropping system is widely practiced in 

the province. Crop establishment in both east and west started in May, and the crop was harvested in 

September/October (wet season), with most of the farmers practicing transplanting. Most of the locations 

were irrigated, with the irrigation supply largely depending on the Bao, Binahaan, Pongso, Gibuga, 

Suong-Tibak and Mainit river irrigation systems. Varieties planted included NSIC Rc 222, NSIC Rc 238 

and NSIC Rc 216, with a duration ranging from 110 to 114 days. Leyte was severely affected by “super 

typhoon” Haiyan (named Yolanda in the Philippines) on 8 November 2013, which passed directly over 

the region. Areas in eastern Leyte had already harvested by this date, while harvesting was in progress 

in western Leyte. Satellite observations, monitoring data and field validation data relevant to this study 

were all completed prior to this devastating typhoon. 

In Agusan del Norte, the monitoring locations for the dry season, 2013 (May to October), were found 

in the municipalities of Bayugan, Buenavista, Butuan City and Cabadbaran City. These areas are 

classified as irrigated lowland and mainly rely on the schedule of the release of irrigation water from the 

Cabadbaran and Taguibo river irrigation systems and the Aupagan area. However, some locations are 

also rainfed. Farmers with a regular irrigation supply maintain a 3–7-cm water level in the field during 

the vegetative and reproductive stages of the rice crop. The most common method of crop establishment 

is transplanting, but some farmers practice direct seeding. A majority of the farmers in the monitoring 

locations prefer PSB Rc18, NSIC Rc122 and NSIC Rc 160 rice varieties. 
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Vietnam (Sites 5 and 6, Soc Trang and Nam Dinh): The lower Mekong is one of the most  

well-studied rice areas in the world, with multiple examples of SAR applications. In the 2013  

summer-autumn (June to September) rice monitoring in Soc Trang Province, a majority of the farmers 

practiced direct seeding. OM rice varieties (Cuu Long Delta Rice Research Institute, Omon District, 

Cantho Province, Vietnam), such as OM4900, OM6976, OM1085, etc., were the dominant rice varieties 

used, with durations ranging from 95 to 110 days. Most of the rice fields that were monitored were 

irrigated areas.  

In the Red River Delta, the selected locations mostly covered Ha Nam and Nam Dinh provinces. 

Every year, this area is transplanted with two rice crops: spring-rice (February to June) and summer-rice 

(July to November). Most of the paddies monitored in the 2013 summer-rice season were irrigated. 

The dominant rice varieties planted in the monitoring locations were Tap Giao (125 days) and BC15 

(135 days), and farmers mostly transplanted their rice plants. 

Indonesia (Site 7, Subang): Subang District, West Java, is one of the central rice production provinces 

in Indonesia. Since irrigation water is available year-round, farmers can grow rice in any month of the 

year. During the wet season, 2013/2014 (November to April), a total of 20 locations were monitored. 

In the monitoring locations, the main rice varieties used by farmers during the wet season were Ciherang, 

Inpari, Mekonga, Sintanur (115 days), IR42 and Ketan (135 days), and the common crop establishment 

method was transplanting. Flooding was observed in some parts of the district in early January 2014, 

but this did not have a significant impact on the rice crop. 

India (Sites 8, 9 and 10, Cuddalore, Thanjavur and Sivaganga): In Cuddalore District, the monitoring 

covered the samba season from mid-July 2013, to the first week of January 2014. The majority of the 

monitored locations were irrigated, predominantly from groundwater (wells). Popular rice varieties 

grown were CR1009, BPT5204 and White Ponni, with maturity durations ranging from 135 to  

160 days. Both transplanting and direct seeding of rice are common in this district, with the former 

establishment method being more dominant.  

Thanjavur is popularly known as the “Rice Bowl” of Tamil Nadu and “Granary of South India”, as  

it is the major district contributing to the food grain supply of the state. The samba season, 2013, from 

August to December, was monitored. Most of the monitored locations were irrigated, and farmers 

practiced transplanting and direct seeding as their crop establishment method. Medium- and long-duration 

varieties, such as CR1009, BPT5204 and ADT (R) 50, were mainly grown, with durations from 135 to 

160 days.  

In Sivaganga, the samba season lasted from September 2013, to January 2014. Rice cultivation was 

broadly grouped into three types: transplanted, semi-dry and direct seeded. The transplanted system was 

practiced in the blocks of Thirupuvanam, Sivaganga, Manamadurai, Singampunari, Thirupattur, S. Pudur, 

Sakkottai, Kallal and Illayangudi. In the semi-dry rice system, seeds are pre-monsoon sown and are 

under rainfed conditions for 30–45 days. Later, the fields were converted into wet fields by irrigating 

from tanks, and this type of cultivation was practiced in the blocks of Sakkottai, Kannankudi, Devakkottai, 

Kallal, Kalayarkovil, Sivaganga, Manamadurai, Illayangudi and Thirupattur. Direct-seeded rice cultivation 

mainly depends on rainfall and is mostly practiced in Illayangudi, Devakkotai, Kannankudi and 

Kalaiyarkovil blocks. Short-duration rice varieties, such as ADT36, ADT45 and JGL, were popularly 

grown in the monitoring locations.  
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Thailand (Sites 11 and 12, Muang Yang and Suphan Buri): In Muang Yang District in Nakorn 

Ratchasima Province, in the northeast region of Thailand, 16 locations were monitored between May 

and November 2013. In general, rice farmers rely on rainfall as their main water source for rice fields, 

resulting in relatively homogeneous crop establishment dates. Farmers typically practice direct seeding 

using photoperiod-sensitive varieties, such as KDML105, RD 6 and RD 15, whose maturity varies from 

150 to 178 days.  

Meanwhile, from June to October 2013, 20 locations were monitored in Suphan Buri Province 

(located in the Chao Phraya Central Plain), where non-photoperiod-sensitive rice varieties were grown 

in irrigated and intensive rice production systems. Irrigation water is available throughout the year, and 

the crop establishment date can vary widely over small distances. The rice varieties used by farmers  

in Suphan Buri included RD 31, RD 47, RD 41, PTT1, RD29, SPR1 and PSK2. These are mostly  

short-duration varieties with maturity durations ranging from 92 to 120 days.  

3. Methods 

The following steps were implemented and are described below in more detail. First, the SAR  

time-series data underwent a series of basic processing steps to generate terrain-geocoded σ° values 

suitable for analysis. This multi-temporal stack was analyzed using a rule-based classifier to detect rice 

areas. The rules for the classifier are based on a small number of parameters that must be selected by  

the operator or user. Temporal feature descriptors are derived from temporal signatures in the monitored 

fields and used to guide the user in setting these parameters for each site. In this stage, it is clear that 

there must always be a degree of user expertise in the setting of the parameters, relying on expert local 

knowledge or other sources of information to further guide the parameter values. Finally, the accuracy 

of the rice area maps is assessed against field data.  

3.1. Basic Processing of SAR Data for Multi-Temporal Analysis 

A fully automated processing chain was developed to convert the multi-temporal space-borne SAR 

SLC data into terrain-geocoded σ° values. The processing chain is a module within the MAPscape-RICE 

software [25]. The basic processing chain includes the following steps: 

1. Strip mosaicking: To facilitate the overall data processing and data handling, single frames  

of the same orbit and acquisition date were mosaicked along their azimuth, generating long  

strips in slant range geometry. This step is performed exclusively when the SAR data are  

zero-Doppler focused. 

2. Co-registration: Images acquired with the same observation geometry and mode were co-registered 

in slant range geometry. The co-registration was performed in three steps: (i) a gross shift 

estimation based on the orbital data; (ii) a set of subwindows was automatically identified based 

on a reference image and on the images to be co-registered, and subsequently, the shifts between 

pixels of corresponding subwindows were calculated, including elevation by means of  

cross-correlation; (iii) finally, the shifts to be applied in the azimuth direction and range direction 

were calculated by a polynomial function depending on the pixel position, respectively, in the 

azimuth and range.  
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3. Time-series speckle filtering: Within the multi-temporal filtering, an optimum weighting  

filter was applied to balance differences in reflectivity between images at different times [28]. 

Multi-temporal filtering is based on the assumption that the same resolution element on 

the ground is illuminated by the radar beam in the same way and corresponds to the same slant 

range coordinates in all images of the time series. The reflectivity can change from one time to 

the next because of a change in the dielectric and geometrical properties of the elementary 

scatters, but should not change because of a different position of the resolution element with 

respect to the radar. 

4. Terrain geocoding, radiometric calibration and normalization: A backward solution by 

considering a digital elevation model (DEM) was used to convert the positions of the σ° elements 

into slant range image coordinates. A range-Doppler approach was applied to convert the  

two-dimensional row and column coordinates of the slant range image into three-dimensional 

object coordinates in a given cartographic reference system. During this step, the radiometric 

calibration was performed by means of the radar equation, in which scattering area, antenna gain 

patterns and range spread loss were considered. Finally, in order to compensate for the range 

dependency, σ° was normalized according to the cosine law of the incidence angle.  

5. Anisotropic non-linear diffusion (ANLD) filtering: This filter significantly smoothes 

homogeneous targets, while also enhancing the difference between neighboring areas. The filter 

uses the diffusion equation, in which the diffusion coefficient, instead of being a constant scalar, 

is a function of image position and assumes a tensor value [29]. In this way, it is locally adapted 

to be anisotropic close to linear structures, such as edges or lines. 

6. Removal of atmospheric attenuation: Although microwave signals have the ability to penetrate 

clouds, it is possible that σ° from shorter wavelengths (X- and C-band) can be locally attenuated 

by water vapor in the range of several dB, because of severe (tropical) storms. The temporal 

signature of σ° can be affected by these events in two ways: (i) the thick layer of water vapor 

generates a strong decrease in σ° during the event, followed by a strong increase after the event; 

(ii) the intense rainfall generates a strong increase in σ° during the event, followed by a strong 

decrease after the event. These effects were removed by analyzing the temporal σ° signature: 

anomalous peaks or troughs were identified, and the σ° values were corrected by means of an 

interpolator. The correct application of this process relies strongly on a priori knowledge of the rice 

crop calendar and the weather conditions when the image was acquired. 

3.2. Multi-Temporal σ° Rule-Based Rice Detection 

The multi-temporal stack of terrain-geocoded σ° images was input to a rule-based rice detection 

algorithm in MAPscape-RICE. The temporal evolution of σ° is analyzed from an agronomic perspective, 

which also requires a priori knowledge of rice maturity, calendar and duration and crop practices from 

field information and knowledge of the study location. The temporal signature is frequency and 

polarization dependent and also depends on the crop establishment method and, to some extent, on crop 

maturity. This implies that general rules can be applied to detect rice, but that the parameters for these 

rules may need to be adapted according to the agro-ecological zone, crop practices and rice calendar. 
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Figure 3 gives an overview of the developed rule-based detection algorithm. Details are expanded 

upon below.  

Figure 3. Rule-based rice detection algorithm for multi-temporal X-band σ° in  

MAPscape-RICE. 

 

We derive rice area from the SAR temporal signature as follows.  

1 The first rule is the rice exclusion condition. The following conditions are applied to the temporal 

signature for each pixel: 

i. Is the average σ° lower than expected (compared against parameter a = lowest mean)? This 

masks out areas with consistently low σ° values that would be typical of stable  

water bodies.  

1 rice exclusion
mean(σo (t)) < a or mean(σo (t)) > b

or span(σo (t)) > c 
or σo (t) < a for t∈[t2-t1]

3 rice or late rice?
max[σo (SoS), σo (SoS+tminlength)] > e

and
max[σo (SoS), σo (SoS+tminlength)] - σo (SoS) > f

no, t=0

2 
agronomic 
flooding?
σo (t) < d

yes, SoS=t

t=t+1

no

4 late rice?
(day (tlast) -
day(SoS)) < 

tminlength

yes

no

yes

no

yes

t > tlast

2b early rice?
span(σo (t)) > f and

deriv((max σo (t) - σo (tlast)) < 0

a = lowest mean
b = highest mean
c = maximum variation
d = maximum value at SoS
e = minimum value at maximum peak
f = minimum variation

Multi-temporal σo

images Not rice

Rice
5 unexpected drop in σo?

min[σo (SoS+1) , σo 

(SoS+tmaxlength)] > a

Late rice

Early rice

t = time
t2-t1 = maximum time under water
tminlength = minimum number of days of season length
tmaxlength = maximum number of days of season length
tlast = date of the last acquisition
SoS = Start of Season

yesyes

no

no

no

no
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ii. Is the average σ° higher than expected (compared against parameter b = highest mean)? This 

masks out areas of consistently high σ° values that would be typical of settlements  

or infrastructure.  

iii. Does σ° remain under a minimum value longer than expected (compared against parameter 

a = lowest mean and t2 − t1 = maximum time under water)? Agronomic flooding of a rice field 

occurs over a short period of time; any longer duration, but non-permanent flooding, such as 

fishponds, irrigation tanks or seasonal wetlands, should be removed by this condition. 

iv. Is the variation in σ° larger than expected (compared against parameter c = maximum 

variation)? Rice, like other seasonal field crops, will show variation in σ° over time. There 

is a maximum amount of variation that can be expected from growth in biomass over the 

season, and this condition removes any areas with unusually high variation. 

This exclusion or masking concept is similar to previous paddy mapping with optical time-series  

data [4], which also stresses the importance of using ancillary data, when available, to mask out  

non-rice areas a priori. Any pixel that meets one or more of these exclusion conditions is labeled  

non-rice and excluded from further processing. Any pixel that does not meet any of these conditions has 

exhibited a temporal signature that is consistent with a rice crop (see Section 1.2) and is retained for further 

processing.  

2 We then apply a stepwise process looking at the temporal signature in more detail starting with 

a temporal series of data from the first image (t = 0) in the time series to the last (t = tlast). 

The second rule looks for any evidence of agronomic flooding at the start of the season (SoS). 

Flooded paddy fields exhibit low σ° values, so, starting with t = 0, if σ° is less than a maximum 

value (d = maximum value at SoS) at this supposed SoS date, then the pixel is retained for 

further analysis. If not, we move to the next image in the time series (t = t + 1) and apply the 

same rule again.  

2b If the above condition is not met on any t value between 0 and tlast, we apply another rule to 

determine whether this pixel could be a rice crop that was established before the first date in  

the time series. In other words, despite not detecting the moment of agronomic flooding, is there 

enough evidence in the temporal signature to still classify this pixel as rice? This rule is critical 

in areas where there is considerable heterogeneity in crop establishment dates beyond that which 

was anticipated in the acquisition plan. The conditions are:  

i. Does the variation in σ° reach a suitable minimum consistent with that expected from a rice 

crop (compared against parameter f = minimum variation)? This detects any evidence of 

biomass increase that could be part of a rice crop signature. 

ii. Is a negative slope in σ° detected between the maximum σ° value in the time series and the σ° 

value at t = tlast? This detects any evidence of a drop in σ° value in later stages of the season 

that again would be consistent with knowledge of X-band σ° temporal signatures for rice. 

Any pixel that meets both of these conditions is labeled early rice and excluded from further 

processing. Any pixel that does not meet both is labeled non-rice and excluded from further processing.  

3 Once a flood detection has been made, the next rule looks for further evidence of a rice crop 

based on: 
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i. For the detected SoS, does the σ° signature reach a suitable maximum value consistent with 

that expected from a rice crop between the detected SoS date and the tminlength date (compared 

against parameter e = minimum σ° value at maximum peak)?  

ii. For the detected SoS, does the variation in the σ° signature reach a suitable minimum 

consistent with that expected from a rice crop between the detected SoS date and the tminlength 

date (compared against parameter f = minimum variation)? 

Again, this detection of rapid biomass increase after flood detection in the temporal series is similar 

to previous paddy mapping with optical time-series data [4]. Any pixel that meets both of these 

conditions is retained for further processing as a potential rice pixel.  

4 Like Rule 2b, it is also possible that the rice crop was established later than anticipated by 

the acquisition plan. In this case, agronomic flooding will have been detected late in the time 

series, and the full temporal signature for rice will not be present. This rule states that, if the 

duration between the detected SoS date and the last date of the time series (tlast) is less than 

tminlength, then the pixel is labeled as late rice and excluded from further processing. 

5 The final rule looks for any unexpected drops in σ° between t = SoS + 1 and t = tmaxlength that 

would be evidence of either a flood or a new cropping season, depending on the elapsed time 

between this low-value detection and the SoS detection (compared against a = lowest mean).  

If this condition is passed, the pixel is labeled as rice. Any pixel that exhibits an unexpected low 

σ° value moves to t = t + 1, and Step 2 is applied again. 

Figure 4 shows the temporal signature for selected representative pixels to visualize the resulting 

classification from applying the rule-based system. Exemplar temporal signatures from the Leyte East 

site are shown for early rice, rice and late rice and other field crops in the top portion, while water bodies, 

urban areas, forest and fallow are shown in the lower portion.  

The top graph shows that, in the class “rice,” the crop shows significant temporal behavior and a large 

dynamic range (−15 to −9 dB) during its growth period. This is due to the interaction of microwave 

radiation with the crop canopy, increasing from the detection of σ° minimum (field inundation) to the 

detection of σ° maximum (around the tillering stage) between acquisitions four and six. In the case of 

“early rice,” the SAR series did not capture the σ° minimum, since it occurred before the first acquisition; 

however, an increase in backscatter is observed during the growth period for the first four acquisitions 

that is typical of the seedling to tillering stage. In the case of “late rice,” the first four SAR acquisitions 

show a high backscatter value because, during that period, the fields were in fallow condition 

(as confirmed in the ground observations). The backscatter minimum was observed in the sixth 

acquisition, indicating flooded conditions, followed by an increase in backscatter in the succeeding 

acquisitions, indicating growth of the rice crop. The other field crop signal shows a distinctly different 

temporal evolution and the absence of any evidence of a water signal at the start of crop growth. 

In the bottom graph, the signatures for water bodies and fallow fields/bare soil show a consistently 

very low to low dB value and urban areas as consistently high, whereas areas with consistently dense 

vegetation over time (for instance, forest, banana plantations, etc.) are characterized by a consistent 

medium to high backscattering coefficient. Other crops are excluded by the significantly different 

temporal evolution (in temporal and radiometric terms) of the radar backscattering and the absence of 
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a water signal at the start of crop growth. In short, this temporal variation of SAR backscatter 

differentiates rice fields from other land cover classes [14].  

Figure 4. Example temporal signatures from Leyte East in 2013 showing different rice 

classes (top) and other land uses (bottom) from one season of CSK X-band SAR data, 

HH polarization and 46-degree incidence angle. Note the different scale in the vertical axes. 

 

 

3.3. Use of Temporal Features to Guide Parameter Selection for the Rule-Based Classifier 

The choice of parameters a, b, c, d, e and f was guided by a simple statistical analysis of the temporal 

signature of σ° values in the monitored fields. Table 3 shows the criteria used to guide the selection of 

parameters. The mean, minimum, maximum and range of σ° were computed for the temporal signature 

of each monitored field. Then, we computed the (i) minima and (ii) maxima of those mean σ° values 

across fields; the (iii) maxima of the minimum σ° values across fields; the (iv) minima of the maximum 
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σ° value across fields; and the (v) minimum and (vi) maximum of the range of σ° values across fields [25]. 

These six statistics, which we call temporal features, concisely characterize the key information in the 

rice signatures of the observed fields, and each one relates directly to one parameter. Hence, the value 

of the six temporal features from the monitoring locations at each site can be used to guide the choice of 

the six parameter values, as shown in Table 3.  

Table 3. Site-specific parameters for the rule-based classification and the criteria used to 

select them based on temporal features. 

Parameter Relationship between Parameter and Temporal Feature 

a = lowest mean a < (i) minima of the mean σ° across all rice signatures 

b = highest mean b > (ii) maxima of the mean σ° across all rice signatures 

c = maximum variation c > (vi) maxima of the range in σ° across all rice signatures 

d = max value at SoS d > (iii) highest minima in σ° across all rice signatures 

e = min value at peak e < (iv) lowest maxima in σ° across all rice signatures 

f = minimum variation f < (v) minima of the range in σ° across all rice signatures 

The parameters tminlength, tmaxlength and t2 − t1 are easier to estimate. tminlength restricts the number of days 

between a start-of-season detection and the subsequent highest σ° value in the temporal signature. Since 

X-band σ° saturates before rice flowering [15], this value can be set to 40–70 days. tmaxlength restricts the 

duration between two σ° minima in the series and 120 days is a suitable cut-off that would be 

representative of an intensive triple-rice system (three crops in one year). t2 − t1 is the maximum duration 

of agronomic flooding at the start of the season, which can be set to a relatively high value of 40 to 50 

to capture even the longest land preparation phases.  

3.4. Rice Map Accuracy Assessment 

A standard confusion matrix was applied to the rice/non-rice validation points collected at each site. 

The overall accuracy of the rice/non-rice classification and the kappa value were recorded.  

4. Results and Discussion 

The results of the parameter determination and map accuracy assessment are presented and discussed 

in turn. These are followed by a general discussion section that critiques the methods and suggests ways 

forward towards a regional-scale rice area mapping and monitoring using this approach. 

4.1. Temporal Features and Parameter Values 

Temporal signatures were extracted for each monitoring field and used to generate the six temporal 

features. The temporal signatures observed in the monitoring locations for each site are provided in the 

Supplemental Information section (Table S2). Fields where the rice crop did not reach maturity because 

of flood or drought were excluded (11 out of 228 were excluded, less than 5%). The criteria in Table 3 

were applied to the temporal feature values and used to select the six parameter values for each site. The 

temporal features and their related parameters are shown in Table 4, where shaded table cells highlight 

cases where the relationship between the temporal feature and the parameter (see Table 3) was not met. 
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tmaxlength was held constant at 120 days; tminlength was held constant at 60 days; and t2 − t1 was kept constant 

at a very conservative 45 days across all sites.  

Table 4. Summary of the selected parameters (in dB) used for the rice classification at each 

site and the corresponding temporal feature values extracted from the field data. Shaded cells 

represent cases where the selected parameter did not follow the temporal feature criterion. 

Site 

ID 
Country, Study Site a < (i) b > (ii) c > (vi) d > (iii) e < (iv) f < (v) 

1 Cambodia, Takeo −18.0 < −11.5 −6.0 > −10.6 20.0 > 12.3 −11.0 > −14.6 −13.0 < −7.3 4.0 < 7.5 

2 Philippines, Leyte East −14.0 < −12.7 −7.5 > −8.3 20.0 > 8.6 −11.0 > −11.8 −10.5 < −9.9 3.0 < 3.3 

3 
Philippines, 

Leyte West 
−14.0 < −11.1 −7.5 > −7.4 20.0 > 12.3 −11.0 > −12.8 −10.5 < −9.1 3.0 < 3.7 

4 
Philippines, 

Agusan del Norte 
−14.0 < −10.6 −7.5 > −7.9 20.0 > 12.5 −8.0 > −11.4 −10.5 < −9.1 3.0 < 4.2 

5 Vietnam, Soc Trang −15.5 < −12.0 −7.5 > −8.8 20.0 > 13.3 −10.5 > −12.0 −10.0 < −9.6 3.0 < 4.5 

6 Vietnam, Nam Dinh −15.5 < −12.2 −7.5 > −8.6 20.0 > 12.5 −10.5 > −12.1 −11.0 < −9.6 3.0 < 4.7 

7 Indonesia, Subang −17.5 < −15.4 −6.0 > −11.1 20.0 > 12.0 −12.0 > 15.6 −12.0 < −11.1 4.0 < 6.3 

8 
India, Tamil Nadu, 

Cuddalore 
−14.0 < −11.9 −8.0 > −8.7 20.0 > 8.2 −12.0 > −12.02 −11.0 < −9.6 3.0 < 3.2 

9 
India, Tamil Nadu, 

Thanjavur 
−14.0 < −10.1 −8.0 > −9.1 20.0 > 9.6 −11.0 > −12.5 −11.0 < −7.0 3.0 < 6.1 

10 
India, Tamil Nadu, 

Sivaganga 
−14.0 < −12.1 −9.0 > −9.04 20.0 > 9.3 −12.0 > −11.7 −12.0 < −9.3 3.0 < 3.9 

11 Thailand, Muang Yang −14.0 < −11.7 −4.0 > −6.2 20.0 > 9.5 −8.0 > −10.4 −10.5 < −9.6 3.0 < 3.6 

12 Thailand, Suphan Buri −15.5 < −13.1 −7.5 > −8.6 20.0 > 11.8 −10.5 > −12.0 −10.5 < −11.1 3.0 < 2.11 

13 
Philippines, Nueva 

Ecija 
−14.0 < −12.6 −7.5 > −8.5 20.0 > 10.9 −11.0 > −10.96 −10.5 < −10.4 3.0 < 3.5 

From the table, it can be noted that the six rice parameters (expressed in dB) are consistent across 

sites and that the choice of parameters agreed with the temporal feature descriptors criteria in all but  

five out of 78 cases, and in two of those cases, the criteria were very close to being met. We provide 

some specific comments on the parameters and the additional user knowledge required at some sites to 

refine the parameter value:  

a, defined as the lowest mean of the temporal data stack, is meant to mask out the lowest values, 

typically occurring over water and was set in the range of −18 to −14 dB. In a few cases, it was clear 

from visual interpretation of the imagery that this setting was not sufficient. For the three sites in Tamil 

Nadu, water tanks were not always excluded, because of the cycle of drainage and replenishment for 

irrigation. In Soc Trang, the draining of aquaculture ponds led to the same effect. In these specific cases, 

a simple threshold should be augmented with the use of ancillary data to mask out such features. 

b, defined as the highest mean of the temporal data stack, is the inverse of a and masks out the strong 

backscatter, which is typical of settlements, and was set in the range of −7.5 to −9 dB. At only one site 

was the temporal feature criterion not met, by the small margin of 0.1 dB. 

c and f correspond to the maximum and minimum variation, reflecting the range of backscatter within 

the rice temporal signature over the whole season, hence excluding land cover, such as forest, that has 
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temporally-stable backscatter over these durations. For X-band HH polarization, the highest variation in 

rice is typically observed between the agronomic flooding and the tillering stage. c was held constant at 

20 dB across all sites as a conservative estimate of the maximum variation, which in practice never 

exceeded 14 dB. f was set to a conservative value of 3 or 4 dB, which is at the lower end of the variation 

expected from a rice crop. At only one site, Suphan Buri, was the temporal feature criterion not met. 

This site exhibited an extremely complex temporal pattern of rice cropping practices, often in very small 

fields at the limit of the spatial resolution of the filtered time series.  

d, defined as the maximum value at SoS (i.e., at agronomic flooding), is typically expected at around 

−18 dB. However, the maximum was set at around −11 dB in order to not omit rice fields where the 

acquisition date was not synchronized with the agronomic flooding. Our observation here is that it is 

crucial that SAR data, in particular at higher frequencies, such as X-band, be acquired with a high repeat 

cycle. Moreover, wind conditions, vegetation over the water and field heterogeneity (i.e., part of the fields 

are not fully covered by water) can cause random scattering, thereby contributing to the backscattering 

coefficient increase. Finally, land practices or water scarcity also have an impact on the setting of this 

parameter; the two rainfed sites of Muang Yang and Agusan del Norte are examples where the temporal 

feature descriptor was correspondingly low. The temporal feature criterion was not met in Sivaganga, 

where rice is sown in a semi-dry practice and was marginally not met in Nueva Ecija.  

e, the minimum value at maximum peak, corresponds to the tillering stage at this frequency and 

polarization (double bounce). d was often higher than e. The key reason is, again, the synchronization 

between acquisition date and the tillering stage, which at this frequency and polarization has a short 

length. Suphan Buri was the one site where the parameter was set outside the suggested criterion. 

In summary, the temporal feature descriptors give bounding values for the selection of  

the rule-based parameters in most cases. Operator experience, local knowledge and ancillary data will 

improve the algorithms’ ability to detect rice. The descriptors only bound the parameters on one side, 

and it would be desirable to have another set of descriptors to bound the parameters on the other side to 

complement and support operator skill and local knowledge.  

4.2. Rice Area Maps 

Figure 5 shows rice area maps derived from multi-temporal X-band SAR imagery for all 13 sites. We 

combine late rice and early rice into one class and distinguish them from rice in the maps below for 

discussion purposes. Map accuracy considers any of the three rice subclasses as rice. 

Takeo (Figure 5a) is largely covered by rice and clearly demarcated into two rice cropping systems, 

the recession rice crop in green and the early wet-season crop, which is represented here as early rice in 

the western portion of the footprint. The long acquisition period missed the start of the early  

wet-season crop, but fully captured the recession rice crop. 

The small irrigated areas of Leyte East (Figure 5b) show a lot of heterogeneity in planting with  

a mixture of early rice, rice and late rice classes. The exemplar rice signatures in Figure 4a were taken 

from this site, with start of season dates ranging from early May to mid-August. This high variability 

could be due to insufficient water availability or insufficient labor for transplanting. Although the reason 

for the heterogeneity is not clear, a longer-duration acquisition plan would help to capture the full  

rice-growing season. 
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Figure 5. (a) Rice area map for Site 1, Takeo, Cambodia; (b) rice area map for Site 2, Leyte 

East, Philippines; (c) rice area map for Site 3, Leyte West, Philippines; (d) Rice area map for 

Site 4, Agusan del Norte, Philippines; (e) rice area map for Site 5, Soc Trang, Vietnam; (f) rice 

area map for Site 6, Nam Dinh, Vietnam; (g) rice area map for Site 7, Subang, Indonesia; 

(h) rice area map for Site 8, Cuddalore, India; (i) rice area map for Site 9, Thanjavur, India; 

(j) rice area map for Site 10, Sivaganga, India; (k) rice area map for Site 11, Muang Yang, 

Thailand; (l) rice area map for Site 12, Suphan Buri, Thailand; (m) rice area map for Site 13, 

Nueva Ecija, Philippines. 

 
(a) 

 
(b) 
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Figure 5. Cont. 

(m) 

In contrast to Figure 5b, Leyte West has a much greater homogeneity of rice establishment dates that 

corresponded well with the acquisition plan. 

The main irrigated areas in the northern part of the Agusan del Norte footprint (Figure 5d) are well 

captured with some apparent difference in planting date on the periphery of the irrigation systems, which 

could be evidence of insufficient irrigation water in the furthest extents of the system for timely planting. 

The smaller rainfed areas are in the south. 

Soc Trang in the Mekong River Delta (Figure 5e) shows another clear transition from early rice in 

the northwest to rice in the south. Irrigation canals are clearly visible throughout the rice area.  

Nam Dinh (Figure 5f) in the Red River Delta is dominated by rice and, although some canals are 

visible throughout the rice landscape, they are not as pronounced as in the Mekong; however, settlement 

and village patterns within the rice area are quite clear. The planting date was extremely regular and 

corresponded well with the acquisition plan. 
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Subang (Figure 5g) is characterized by the release of irrigation water starting in the south and 

proceeding north to the coast as the season progresses. Since the acquisition period was linked to the 

first release of irrigation water, it is the coastal areas, planted later, that are classed as late rice, and there 

are some small areas of early rice in the upper reaches of the system. 

Cuddalore (Figure 5h) is another area where the variability in rice crop establishment date is due to 

the uncertainty in the date of water availability. The clearly demarcated patches in the rice crop 

in the northern part are water tanks that were successfully excluded from the classification. 

Thanjavur (Figure 5i) is a much more intensively cropped area than the other two sites in India, and 

again, the water tanks that were successfully excluded from the classification are clearly visible as 

patches in the rice area. 

Sivaganga (Figure 5j) was a challenging site to classify because of the sparse rice area and  

the semi-dry rice crop establishment practice. The irregularity in monsoon rains is one reason for 

the variation in crop establishment date across the site, resulting in a mixture of early/late rice and rice. 

Muang Yang (Figure 5k) is an extensive rainfed system with homogeneous planting dates due to 

plentiful and timely rainfall in most areas during the monitored season. Field sizes are much larger than 

those in Suphan Buri, and coarser spatial resolution imagery (in the region of 20 m) than used here would 

be more suitable for rice crop monitoring in the northeast region of Thailand. 

Suphan Buri (Figure 5l) was another challenging area to map, since the continuous availability of 

irrigation water and the stable seasonal conditions mean that rice can be established at almost any time, 

in patterns of double crop, triple crop or five crops in two years. This complexity in crop calendars means 

that a short-duration acquisition period cannot capture the full rice signature over the entire footprint. 

Furthermore, the small field sizes at the site were difficult to capture with the coarser spatial resolution 

used in this large footprint. Longer-duration monitoring or even continuous monitoring with higher 

spatial resolution would be required to better represent the rice area here. 

Nueva Ecija (Figure 5m) is the major rice-growing area of the Philippines, and it relies on water 

provided by major irrigation facilities—the NIA-UPRIIS (National Irrigation Administration-Upper 

Pampanga River Integrated Irrigation Systems) service area—for much of the footprint. The water 

source is the Pantabangan Dam (the reservoir is clearly visible in East of the image), which is one of the 

largest irrigation facilities in the Philippines. The planting in this season was relatively homogeneous 

and aligned with the acquisitions, with only a few areas showing early or late planting.  

4.3. Rice Map Accuracy Assessment 

The accuracy assessment is a comparison of the classified rice map against ground-truth data.  

The spatial resolution of the rice maps ranges from 3 m to 15 m. However, the ANLD filtering processes 

(see Section 3.1) reduce the effective resolution by performing locally adaptive smoothing and edge 

detection. To account for this lower resolution and the horizontal accuracy of the handheld GPS units 

relative to the pixel size, the validation data were collected in areas that had homogeneous land cover in 

a 15-m radius around each GPS point for sites using 3-m resolution imagery and a 50-m radius for sites 

using 10-m or 15-m resolution imagery (see Section 2.2). The observed land cover at the GPS validation 

points was compared to the mode value of the rice map pixels within a window that matched the radius 

used in the validation land cover assessment. The accuracy assessment for the rice maps was conducted 
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on a rice/non-rice basis, where all other land cover types were grouped into a single non-rice class. 

Across the 1,334 points, 696 (52.2%) were rice, 233 (17.5%) were other annual, perennial or plantation 

crops (such as banana, coconut, cotton, fruit orchards, cassava, corn, sugarcane, groundnut and black 

gram), 85 (6.4%) were built-up areas, 75 (5.6%) were forest, 72 (5.4%) were grassland, 35 (2.6%) were 

water bodies, with barren, mixed, shrublands, and others made up the remaining 10.3%.  

This rich non-rice dataset (638 points) could be further exploited in the future to assess the SAR 

signatures of other land cover types commonly found in rice-growing areas. The same signatures could 

also be used to generate new bounding limits (based on the temporal signatures for other crops and urban 

and water surfaces, for example) to further guide parameter selection in the rule-based classifier.  

Given the large amount of in situ data collection across 13 sites and six countries, we adopted a rapid 

and practical approach to the sampling method for the map validation (see Section 2.2) as opposed to a 

regular sampling grid, for example. There is substantial variability in the spatial distribution of the 

validation points across the sites (Figure 5a–m), which reflects a combination of the following 

constraints: (i) variability in the level of road access; (ii) the human resources available; (iii) the local 

teams’ familiarity with the landscape; and (iv) availability of ancillary spatial data to guide the team. In many 

cases (Site 1, Takeo, Site 6, Nam Dinh, Site 8, Cuddalore, Site 9, Thanjavur, Site 10, Sivaganga, Site 

11, Muang Yang, Site 12, Suphan Buri, and Site 13, Nueva Ecija), additional validation dates were added 

to increase the spatial coverage of the points. In total, 37 days of travel and field data collection were 

required to collect 1334 validation points across the 13 footprints, an average of 36 points per day and 

103 points per site (Table 5). It is clear that even this rapid appraisal approach was resource intensive, 

especially in areas where accessibility was limited.  

Table 5. Summary of site validation visits, rice area and accuracy assessments. 

Site 

ID 
Country and Study Site Validation Points and Date(s) of Validation 

Rice Area (ha) and as % of 

Footprint  

Accuracy and 

Kappa 

1 Cambodia, Takeo 100, 8 April, 22 April and 11 September 2013 150,026, 94% 85%, 0.70 

2 Philippines, Leyte East 99, 24–26 September 2013 17,817, 11% 87%, 0.74 

3 Philippines, Leyte West 85, 27 to 28 September 2013 15,229, 10% 89%, 0.79 

4 Philippines, Agusan del Norte 100, 14–16 October 2013 13,163, 8% 89%, 0.78 

5 Vietnam, Soc Trang 108, 25 September 2013 55,216, 35% 87%, 0.74 

6 Vietnam, Nam Dinh 100, 30 August and 5 September 2013 108,733, 68% 89%, 0.78 

7 Indonesia, Subang 115,10–13 February 2014 64,533, 40%  97%, 0.93 

8 India, Tamil Nadu, Cuddalore 111, 12 February and 3 March 2014 26,015, 16% 92%, 0.84 

9 India, Tamil Nadu, Thanjavur 102, 31 January, 1 February and 7 March 2014 83,871, 52% 91%, 0.82 

10 India, Tamil Nadu, Sivaganga 105, 14 and 21 February 2014 41,825, 24% 87%, 0.73 

11 Thailand, Muang Yang 
109, 17 October and 12 December 2013; 12and 

28 February 2014  
91,908, 57% 86%, 0.72 

12 Thailand, Suphan Buri 
100, 25 September, 25 October and 14 December 

2013; 22 January 2014 
555,317, 40%  87%, 0.74 

13 Philippines, Nueva Ecija 100, 19 September, 3 and 4 October2013 424,801, 27% 86%, 0.72 

 Points and area (ha) 1334 1,648,454  
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4.4. Potential Sources of Misclassification 

Although the classifier can properly detect most rice areas, some land cover types can cause 

misclassifications. Wetland or seasonal water bodies that are subjected to drying followed by sudden 

vegetation growth can contribute significantly to an increase in commission errors. This behavior is 

observed for some rivers that drain very quickly and also for water tanks used to store irrigation  

water (Sivaganga, for example). The temporal signature of this land cover is similar to the typical  

rice signature, and if the timing of the event corresponds to the known rice crop calendar, then 

the discrimination of rice is extremely challenging. One solution is to use multi-temporal SAR or optical 

images acquired in suitable periods, often outside the rice-growing season, to develop such a mask. In 

some cases, but this depends on the rice environmental conditions, the use of additional polarizations or 

the combination of different frequencies (for instance, the C- and L-band, as shown in [25]), which may 

help in the exclusion of some non-rice areas.  

Many of the omission errors were associated with a lack of correspondence between the observed  

rice crop calendar in isolated areas within the footprint and the acquisition period. This is particularly 

problematic when rice is sown early with respect to the average crop calendar, since the signature does 

not include the critical land preparation/agronomic flooding, which is the foundation of rice detection. 

A further problem relates to extremely short-duration varieties, around 90 days, which are transplanted 

as 15- or 20-day-old seedlings. This means that the remaining vegetative stage in which biomass increases 

substantially is of very short duration and can be hard to detect, especially if there are cancellations 

during that time of the season. Photoperiod-sensitive varieties with a long growth duration, such as those 

cultivated in Muang Yang, are also challenging, and further work is required to determine the most 

appropriate parameters for those situations.  

We have considered only six temporal feature descriptors in this study, but other features could be 

extracted and related to the rice crop phenology. This could improve the accuracy, but also further guide 

the parameter selection by providing bounds on both sides of the parameter value. 

4.5. Observations on the Temporal and Spatial Resolution Requirements for SAR Rice Crop Mapping 

Despite good local knowledge and planning, the acquisitions did not always coincide with the rice 

crop calendar, resulting in significant areas of late or early rice detection. The complexity of cropping 

calendars, changes in farmer intentions, unexpected delays to the start of the season and delays in 

the release of irrigation water all play a role in this. Acquisition plans for rice crop monitoring need to 

account for this uncertainty in rice calendar information. Year-round monitoring may be needed in areas 

where rice is cultivated several times a year.  

Appropriate temporal frequency plays a key role in the accurate detection of rice area and in other rice 

crop growth information. For short- and medium-duration crops, as grown in nine of the 13 footprints, the 

season duration is approximately three to four months, which translates into 6–8 CSK images or 9–12 

TSX images per season. For these durations, we found that at least 6–7 images are needed to perform a 

reliable analysis, and this suggests that a 16-day repetition is the minimum requirement for rice crop 

monitoring using this approach. Higher temporal frequency would of course be better considering the fast 
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development of the rice plant and the sensitivity of the X-band to the different crop stages. Future work 

should explore the derivation of key crop dates and stages from the same series of images. 

High spatial resolution is also important and is related to field size, planting homogeneity and 

landscape fragmentation. In areas characterized by large paddy fields in homogeneous clusters, lower 

resolution data could be suitable. The Red River Delta and northeast Thailand are good examples of this 

rice environment. However, in areas, such as Leyte in the Philippines, where most plots are smaller and 

where neighboring fields can have completely different crop stages, a higher spatial resolution is desirable 

to capture rice area and other rice crop information.  

Regular acquisitions with high spatial and temporal resolution over a large area will require substantial 

processing capability, such as scalable cloud computing solutions or the use of high-performance 

computing clusters for parallel processing. The basic processing chain in MAPscape-RICE (see Section 3.1) 

to convert SLC data into terrain-geocoded σ° values is already fully automated and highly suitable for 

parallel processing, but the rice map classification requires operator decisions on appropriate parameters. 

A library of parameters for different environments and management situations could increase the efficiency 

of the classification process. 

4.6. Regional-Scale Mapping and Monitoring of Rice Areas in Asia: A Way Forward 

We have demonstrated that rice area can be accurately classified with X-band HH polarization SAR 

images across multiple environments and management conditions. We have also demonstrated that a 

large number of scenes covering a large geographic extent can be quickly analyzed using automated 

processing combined with rule-based parameters that can be derived by the operator based on 

information gathered from field observations.  

SAR-based rice mapping is not new, but the opportunity to develop operational rice monitoring 

services based on SAR data is new, and there is a great deal of interest and activity in the region. In 

addition to national-level projects, several consortia are demonstrating the value of rice crop monitoring 

with SAR across Asia and elsewhere. The Swiss Agency for Development and the Cooperation-funded 

RIICE project [30] are exploring both public and private sector applications in food security and crop 

insurance with the aim to build capacity in-country to sustain such services. The Asia-RiCE [31] 

component of the GEO Global Agricultural Monitoring (GEOGLAM) initiative aims to ensure that rice 

crop monitoring issues are given suitable priority and attention within the scope of the full GEOGLAM 

initiative [32], including the development of the observation requirements. Another project conducted by 

the Asian Development Bank and supported by the Japan Fund for Poverty Reduction aims to improve the 

quality and timeliness of rice crop area and production estimates and forecasts through SAR data [33]. 

In Europe, the ERMES (An Earth Observation Model-based Rice Information Service) project aims to 

develop a prototype of downstream service dedicated to the rice sector based on assimilation of EO and 

in situ data within crop yield modeling [34]. In short, there is a clear demand and increasing capacity for 

using SAR data to monitor rice crops on a large scale. 

Current and forthcoming SAR systems, such as CSK, TSX, RADARSAT-2, RISAT-1, Sentinel-1 

and ALOS-2, offer an unparalleled opportunity to deliver regular and systematic acquisitions of the rice 

crop in Asia. This could provide information on seasonal rice area, planting dates, crop growth 

parameters, harvest dates and the impact of flood, drought and wind on the crop. This can be realized 
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only if acquisition plans are aligned to the rice crop extent and rice crop calendar across Asia and if 

acquisitions are frequent enough. Unfortunately, so far, a key challenge is that countrywide systematic 

acquisitions are still non-existent. In the past three decades, attempts to obtain application-oriented SAR 

data archives have been carried out by ESA (ERS-Tandem), NASA/JPL (Shuttle Radar Topographic 

Mission), JAXA (ALOS PALSAR-1) and DLR/EADS Astrium (TanDEM-X) for topographic and forest 

applications. We hope that space agencies will follow this model for a wider spectrum of land 

applications and that, in the medium term, common strategies will be pursued. 

Field data collection for validation and calibration of remotely sensed data is the most challenging 

technical aspect of large-scale rice crop monitoring. The development of protocols for rapid and  

low-cost field assessments is essential if such monitoring systems are to become operational. These 

protocols could be based on existing field and farmer surveys that are carried out under current reporting 

by ministries of agriculture or statistics. Furthermore, the use of smart phones or tablet devices to collect 

field data (such as photos, GPS coordinates, field observations and farmer surveys) and transmit the data 

via the mobile network or Wi-Fi network to a central database should be explored.  

From our experience in this study across six countries and 13 sites, we recommend the following:  

(i) A collaborative effort across consortia to provide space agencies with the current best available 

rice extent data and rice cropping calendar data for Asia, so that the best systematic acquisition 

strategies can be developed alongside other acquisition needs. 

(ii) Uniform coverage of the major rice-growing areas using high spatial resolution (5 m–20 m) 

SAR imagery with at least bimonthly frequency, with single or dual polarization and with incidence 

angles between 37° and 50°. There are good examples of the benefits of regular, consistent, 

systematic acquisition planning for monitoring at the national and continental scale [35]. 

(iii) The development of automated processing chains installed on cloud-based or cluster-based 

hardware solutions to meet the processing and storage requirements of this large amount of data. 

(iv) Further research into the use of temporal feature descriptors to classify rice [25]. 

(v) The development of an open-access library of signatures for rice, and other crops, across 

multiple environments based on a range of SAR sensors, wavelengths, polarizations and incidence 

angles. This would complement comparative analyses at the field level [15]. 

(vi) The evaluation of mobile devices for field data collection. 

These recommendations support the regular provision of SAR-based information services, not only 

for rice, and could emulate the highly successful MODIS project in terms of both application 

development and scientific advancement in Earth observation. 

The unintended consequences of short-term policies and panic responses, such as those that created 

the rice price crisis of 2008, led to significant food insecurity and poverty for millions across Asia.  

The provision of regular, unbiased and accurate information on the rice crop would be a significant 

contribution to policy support and would reduce the risk of similar events happening in the future. Such 

an endeavor would require coordinated acquisition plans and open data access policies across SAR 

providers, in-country capacity building for developers and users of the information and investments in 

research and policy institutes across the region. This is no minor task, but the societal benefits that would 

accrue from this could be substantial and directly attributable to remote sensing.  
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5. Conclusions 

This research is a contribution to rice mapping and monitoring methods based on multi-temporal SAR 

data. We presented a new rule-based algorithm, based on agronomically relevant rules and parameters 

that classified rice area with consistently high accuracy (>85%) across different rice environments and 

crop management practices (wet season and dry season, irrigated and rainfed, direct seeded and 

transplanted, short- to long-duration varieties). This is the first time that such diversity in rice systems 

has been assessed with the same mapping approach. The study demonstrates that regularly acquired  

X-band HH SAR imagery is suitable for rice crop monitoring across the major rice environments of 

South and Southeast Asia. Future studies should consider a broader range of SAR wavelengths, 

polarizations and acquisition angles.  

The study used the largest number of sites (13), images (127) and field data observations  

(228 monitored fields, 1922 monitoring visits and 1334 map validation points) of which we are aware. 

The study demonstrates that this new rice mapping algorithm is robust, that the parameters can be 

suitably tuned using local knowledge and field observations and that large-scale rice monitoring is 

feasible. Future studies should consider mobile devices for field data collection to reduce the costs across 

larger areas. The study presented the concept of agronomically relevant temporal feature dynamics for 

rice and provided their respective values for X-band HH SAR with acquisition angles between 39° and 

48°. The research suggests that further temporal feature descriptors should be developed to improve the 

guidance for parameter selection. 

One limitation highlighted by the research is the need for ancillary information on land use/land cover 

to improve the classification in areas where the temporal signature for rice is similar to that of wetlands, 

water tanks or other areas with comparable temporal dynamics in both water and vegetation cover. Better 

access to such data and the development of an open-access library of signatures would improve rice 

mapping with SAR. This study extracted rice area information only from the temporal series, but in the 

future, the method should be adapted to extract further rice crop parameters from the temporal signature, 

such as flooding dates, crop establishment dates, crop stage identification and SAR-derived parameters 

for input to crop growth simulation models, thus providing spatial and temporal information on both rice 

area and production for food security applications. 
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