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The dynamics of Vietnam agriculture under changing conditions 

 

Abstract 

 

Although Vietnam has undergone fundamental transformation since the economic 

reforms in the late 1980s, agriculture continues to play a pivotal role in the economy. Given 

the rising food demand and declining availability of farmland areas, improvements in rice 

technology are vital for Vietnam to maintain food security and export status. Despite the 

rising application of high-yielding varieties, rice productivity growth slowed down. The 

sustainable development of Vietnam agriculture is facing additional challenges due to 

changing climate which is expected to affect several aspects of agriculture. To date, there 

has been little insight into how Vietnam agriculture is likely to be impacted by these drivers. 

This thesis is among the first studies which provided robust estimates of the impacts of 

technology change and climate change on the Vietnam agrarian economy. 

Utilizing data from the Vietnam Access to Resources Household Surveys (VARHS) 

2006 -2016, this thesis examined the major ongoing changes in Vietnam agriculture and  

likely impacts of these changes. Three specific relationships were examined: (1) The 

relationship between hybrid rice seeds and productivity; (2) the relationship between climate 

change and agricultural productivity; and (3) the relationship between changing climate and 

land use choice as an adaptation strategy and its likely impact on long-term food security. 

The literature on hybrid rice has reported superior productivity of hybrid rice seeds 

over inbred varieties. This is not supported by our panel stochastic frontier estimates 

pertaining to productivity impact assessment for Vietnam. Estimates of a large managerial 

gap indicate a handsome benefit from efforts to increase productivity. Vietnam is expected 

to be among the countries hardest-hit by climate change. However the panel Ricardian model 

suggests marginal impacts, even in the long run when the projected changes are more severe. 
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Changing crops is an adaptation to climate change. The empirical findings from the 

Fractional Multinomial Logit model indicate the sensitivity of the Vietnam land use system 

to climate. Seasonal climates exert heterogeneous impacts on land use shares for different 

crops. The projected climate changes are expected to induce large shifts from cereals to 

annual industrial crops in the two rice bowls of the country. 

 This thesis made several contributions to impact assessments and suggested policy 

implications. First, the productivity impact assessment in Chapter 3 provides a simple way 

to control for selectivity bias in a panel stochastic frontier framework while allowing for 

direct comparisons of the base productivity, factor productivity, and technical efficiency. 

Second, the analyses of climate impacts and crop choice in Chapter 4 and Chapter 5 provide 

a simple way to relax the assumption of a constant effect of market feedbacks in climate 

change assessments and this avoids biased climate estimates. Finally, this thesis provides 

valuable policy implications regarding the development of rice technology and climate 

change adaptation in a developing country where agriculture supports income and 

employment for a large portion of the population. 
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Chapter 1. Introduction to the thesis 

 

1.1. The Vietnam agricultural context 

The on-going success of Vietnam agriculture, and the rice sector, has been attributed 

to the fast and steady economic performance of Vietnam (McCaig & Pavcnik, 2013; McCaig 

et al., 2009). In the early 1980s, Vietnam was one of the five poorest countries (Glewwe, 

2004) with barely any prospect for development. The series of reforms initiated in 1986 freed 

agriculture from the existing constraints on farmers and firms autonomy. With a large 

proportion of agricultural population, improvements in agricultural productivity and rural 

household incomes played a pivotal role in economic growth and equity. Rural household 

income rose by 11% per annum in the period 1993 – 1998 (Brandt & Benjamin, 2002), and 

by 7% per annum for the period 2002 - 2014 (Benjamin et al., 2017). The main reasons for 

the increase in household incomes were increased earnings of agricultural laborers 

(Benjamin et al., 2017; Ravallion, 2008) and off-farm job opportunities (Benjamin et al., 

2017). 

The literature on the Vietnam agricultural transformation has focused on the 

economic reforms in the late 1980s (Jerez, 2018; Glewwe, 2004; Goletti, 2000; Pingali & 

Xuan, 1992) which motivated farmers to work harder and smarter. In addition, improved 

productivity and agricultural income of Vietnamese farmers has been attributed to the rising 

application of advanced technologies in the rice sector. Nghiem and Coelli (2002) estimated 

an average of 3.5% of TFP growth of the Vietnam rice sector between 1976 and 1997 of 

which technical change made up the most part. Che et al. (2006) showed that agricultural 

innovation played an important role (up to 80%) in accelerating agricultural growth in 

Vietnam during the reforms. 

Since the easy part of productivity gains through improved varieties and higher input 

intensity have been achieved, hybrid rice seeds have been regarded as the most important 
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technology coping with the food security concern for Vietnam (Ut & Kajisa, 2006). 

Significant funds have been allocated to imported hybrid rice seeds. Despite this, rice 

productivity growth slowed down, from 1.8 percent per annum between 2006 and 2010 to 

0.8 percent between 2010 and 2016. The slowdown in rice productivity raised concern over 

Vietnam rice technology development in the post-Green Revolution period. Unfortunately, 

no effort has been devoted to understanding how the post-Green Revolution is proceeding 

in the agrarian economy of Vietnam. There is also an open debate among development 

scholars over future prospects for agricultural growth. Ruttan (2002) expressed concern over 

prospects to sustain world agricultural growth as agricultural technology has begun to 

experience diminishing returns while Evenson and Gollin (2003), and Renkow and Byerlee 

(2010) documented no evidence of such slowdown in returns to improved crop varieties. 

Therefore, productivity impacts of hybrid rice merits thorough analysis given the pivotal role 

of rice in the Vietnam economy and Vietnam’s status in the global rice market. 

Future development of Vietnam agriculture is uncertain due to emerging challenges. 

Vietnam is expected to be among the countries hardest-hit by future climate change 

(Dasgupta et al., 2009). A report by the Ministry of Natural Resources and Environment 

(MONRE, 2009) indicates non-uniform changes in climate patterns. Temperature is 

predicted to increase faster in autumn and winter. While the Northern region of the country 

will experience a shortage of rainfall in spring, the Southern region will suffer from lower 

precipitation for winter and spring. The small-scale nature of Vietnam agriculture with low 

adaptation capacity makes it more vulnerable to changing climate. Despite the growing 

evidence of such climate change, there has been little expertise on how Vietnam agriculture 

is likely to be affected by changing climate. Climate impact assessments are, therefore, of 

special interest to policy-makers as an inference to propose adaptation strategies. 
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1.2. Research objectives and research questions 

This thesis is dedicated to exploring the dynamics of Vietnam agriculture in periods 

of changing policies, technology, and environmental conditions. Albeit with limited 

evidence, hybrid rice has been regarded as the driving force of improved agricultural 

productivity. Additionally, Vietnam is considered to be among the countries hardest-hit by 

future climate change. The likely consequences of changing climate can be declines in 

agricultural productivity and incomes, agricultural land losses, and changes in land use 

patterns which may affect food security. Climate change impact assessments are, therefore, 

crucial for adaptation policy. The primary objective of this thesis is to explore the major 

changing production conditions and their likely impacts on Vietnam agriculture. To meet the 

research objective, four interconnected studies were conducted to better understand the 

dynamics of Vietnam agriculture and the likely outcomes. 

 The first paper presented in chapter 2 provides an overview of the transformation of 

Vietnam agriculture, with a focus on the rice sector, in the latter half of the twentieth century. 

It provides a detailed picture of the dynamics of agriculture in changing environments: (1) 

technology change; (2) Input and output market reforms; (3) and agricultural support policy 

change. The study addresses the following research question: What were the factors driving 

the discrepancies in agricultural performance across regions? The paper applies the historical 

approach to explaining the dynamics of Vietnam agriculture. Data and supporting evidence 

come from numerous reports and journal articles that the author is able to access. The 

analysis shows that the fast transformation of Vietnam agriculture was the outcome of policy 

changes and technological advancements. In contrast to most previous thoughts on the 

growing income gap in favor of the rural South, this paper demonstrates that farmers in the 

Red River delta successfully managed to enjoy higher income growth despite limited 
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farming areas. The bottleneck for future transformation of Vietnam agriculture is excessive 

land fragmentation. 

 The second analysis investigates the productivity impacts of hybrid rice seeds in 

Vietnam. The analysis seeks to answer the second research question: Does the adoption of 

hybrid rice seeds help improve rice productivity? Panel stochastic frontier models with 

correction for selectivity bias were estimated. The research findings from the seed selection 

model confirm the importance of input availability and market conditions in explaining 

adoption of hybrid rice. The panel stochastic frontier results indicate a lower base 

productivity of hybrid rice in the period studied. The analysis also indicates a stagnancy of 

agricultural technology as the results show an inward neutral technology change in the 

Vietnam rice sector between 2006 and 2016. However, a large managerial gap of 39% 

indicates a handsome benefit from efforts to increase productivity in Vietnam. 

The third study endeavours to quantify the economic impacts of climate change on 

Vietnam agriculture. This paper addresses the following research question: What are the 

long-term impacts of climate change on Vietnam agriculture? The Ricardian approach to 

evaluating economic impact of climate change is applied to a ten-year panel of crop 

production using the two-stage Hsiao method. In contrast to previous panel Ricardian models 

assuming uniform effect of market shocks on households, we allow market shocks to have 

differentiated effects on different regions with different crop portfolios. The Ricardian model 

is then used to simulate how non-marginal changes in future climate will affect Vietnam. 

The climate simulation indicates marginal losses due to the projected climate changes on 

Vietnam agriculture, with net losses ranging from 0.02% to 2.6% across regions. While 

regions with cool climate such as the Central Highlands and the Northwest are likely to 

experience losses, the Red River delta is hardly affected at all. However, changing climate 
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exerts heterogeneous seasonal and regional effects. Irrigation is a positive adaptation 

response that can mitigate negative impacts of climate change. 

 While the third study implicitly assumes full adaptation in terms of crop substitution, 

the fourth analysis in Chapter 5 is dedicated to investigating the uptake of crop substitution 

as an adaptation strategy to changing climate. The paper aims at addressing the following 

research questions: Have Vietnamese farmers adapted to the current climate by means of 

crop substitution? If yes, how will the projected climate change be likely to affect land use 

patterns in the future? A Fractional Multinomial Logit model is applied to a ten-year panel 

of household data to capture the competition across land use alternatives. We allow price 

feedbacks to have variable effects on different land use alternatives while the model relaxes 

the assumption on the additive separability of temperature and precipitation. Empirical 

findings suggest that Vietnamese farmers have adapted to the changing climate in terms of 

crop selection and this adaptation depends on household and farmland characteristics. 

Increases in winter and summer temperatures shift the farmland towards cereals. Farms in 

wet locations with colder winters and cooler summers are likely to choose cash crops. 

Farmers choose annual industrial crops in locations with warmer springs and autumns. Farms 

in wetter locations with warmer winters and cooler summers tend to choose fruit trees. The 

production of permanent industrial crops requires stable temperatures. These crops are 

preferred by farms in locations with warmer winters and cooler summers. The projected 

climate changes are expected to induce large shifts from cereals to annual industrial crops in 

the two rice bowls of the country. 

1.3. Overview of data and research methods 

In what follows we present a brief description of the data used, the methods applied 

in our studies. More details about the data and the methods are discussed in consecutive 

analyses from Chapter 3 to Chapter 5. 
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All the data used in our studies are secondary. We make use of the nationally 

representative surveys – the Vietnam Access to Resources Household Surveys (VARHS) 

from 2006 to 2016. These surveys have been conducted by the Vietnamese government once 

every two years since 2006 to give extra information on access to resources by rural 

households. The VARHS 2006 collected information on 2,324 rural households in 12 

provinces across seven agro-ecological regions. Most of these households were then re-

surveyed in subsequent rounds while the sample sizes have been adjusted to population 

growth. These datasets contain rich information on agricultural production and access to 

markets. These surveys provide an opportunity to generate panel data which are believed to 

enhance the robustness of econometric results. We applied the Probabilistic Data Record 

Linkage method to combine separate datasets to generate panel data:  

First, different data files in each year were linked together by using the probabilistic 

record linkage (reclink2 command in Stata). Identifiers used for the linkage technique are 

province code, district code, commune code, and household code. 

Second, the linked dataset for each year was then cleansed to retain households with 

agricultural production. The second step reduced sample size in each year substantively. 

After data cleansing, we have 2,103, 2,381, 1,883, 1,839, 1,537 and 1,628 households for 

the years 2006, 2008, 2010, 2012, 2014, and 2016, respectively. These data files were then 

cleansed again to give them identical structure. 

Finally, these separate datasets were appended together to make a ten-year panel 

using the same identifiers as what were used in the Probabilistic Data Record Linkage. For 

the technology adoption and its impact assessments (Chapter 3), we are interested in creating 

a balanced panel for the period 2006-2016. Therefore, we dropped out all households without 

rice production and all households with missing values for any given year were removed 

from the panel. We have a strongly balanced panel of 325 households with complete 
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information surveyed in all years in the study period, or a total of 1.950 year-observations. 

However, for the analysis of climate impact assessment in Chapter 4, we use a larger 

unbalanced panel of more than 8,000 year-observations. Chapter 5 ignores the panel 

structure of the data. We pool the data across years and allowed time-effects in the Fractional 

Multinomial Logit model. Therefore, the Fractional Multinomial Logit model in Chapter 5 

is estimated on a data frame of 11,829 year-households. 

The climate impact assessment in Chapter 4 and Chapter 5 uses climate normals of 

temperature and rainfall for the period 1970-2000. The climate data with a high resolution 

of one square kilometer were derived from Worldclim version 2.0. Climate and agricultural 

production may vary across latitudes (Mendelsohn et al., 1994). We extract data on elevation 

with the same resolution using free spatial data from DIVA-GIS website. These climate and 

topographical data were extracted with the kind assistance of Ha Nam Thang at the 

Environmental Research Institute of the University of Waikato. The climate and elevation 

data were then matched with the household location. 

For the estimation of productivity impacts of hybrid rice in Chapter 3, we apply a 

True Fixed-Effects (TFE) panel stochastic frontier model on a matched sample generated 

from Propensity Score Matching to address selectivity bias. The Propensity Score Matching 

is applied to generate a subset of observations with similar pairwise probability towards 

hybrid rice seed adoption. The TFE frontier model is then applied on the subsample. The 

Propensity Score Matching eliminates selection on observables. The TFE estimators are free 

from unobserved time-invariant heterogeneity. Unobserved time-varying heterogeneity is 

uniform between the two groups of farmers with different adoption status and is not a source 

of bias. Previous impact assessments in the rice sector failed to accommodate direct 

comparisons of the base productivity and factor productivity. We adopt a flexible Stochastic 

Frontier model that allows for disentanglement of technology and managerial gaps. We also 
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relax the assumption on time-invariant technical efficiency using the panel stochastic frontier 

model developed by Greene (2005). 

The assessment of economic impacts of climate change in Chapter 4 applies the 

Ricardian approach to an unbalanced panel over ten years. Prior panel Ricardian analyses 

have captured market variations as common shocks (Blanc & Schlenker, 2017; Blanc & 

Reilly, 2017). However, variations in agricultural commodities are not uniform (Haile et al., 

2016) such that farmers with production of different crops may be exposed to different 

market shocks. We relax this assumption to capture heterogenous market feedbacks across 

households in different regions. The Ricardian function is estimated across 20 crops that 

have been typically produced in Vietnam. We carefully test for stability of climate effects in 

the period studied to justify the use of the two-stage Hsiao method. The dependent variable 

is net crop income per square meter. The independent variables represent a broad range of 

factors potentially associated with agricultural performance, including household 

characteristics, farmland characteristics, socio-economic conditions, and climate. In the first 

stage, the dependent variable is regressed on time-varying variables to obtain the residuals. 

These time-mean residuals (simple residuals plus fixed-effects) are then regressed upon 

climate variables, along with other time-invariant controls. The Hsiao method is used to 

simulate the likely impacts on Vietnam agriculture of marginal and non-marginal changes 

in long-term climate. 

The analysis on the sensitivity of the Vietnam land use choice in Chapter 5 employs 

the Fractional Multinomial Logit model. The advantages of the Fractional Multinomial Logit 

model over the Multinomial Logit model are that this approach allows the estimation of land 

use with a set of more than one dependent variables representing different land use shares 

for different crops. In addition, the interpretation of the Fractional Multinomial Logit model 

based on the average marginal effects is easy to understand. We regress the set of dependent 
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variables (which are land use shares of different crops) on a broad range of factors which are 

potential drivers of land use allocation, including a set of climatic variables and their square 

terms (in addition to climate interactions). In order to obtain a sense of climate change 

impacts on land use choice, we simulate how the projected climate changes will alter 

Vietnam land use in the future using the Fractional Multinomial Logit results.  Figure 1.1 

presents the core elements of the thesis and how they fit together in a framework. 
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1.4. Contributions to the literature 

 This thesis is a compilation of four interrelated studies aiming at shedding light on 

the dynamics of Vietnam agriculture under changing conditions. Each of the studies focuses 

on different aspects of agriculture. The thesis fills knowledge gaps pertaining to economic 

issues and econometric modelling methods. 

 The first study in Chapter 2 provides a comprehensive overview of the 

transformation of Vietnam agriculture and its changing context in the latter half of the 

twentieth century. Although the fast improvement in Vietnam agriculture has been 

documented, barely any previous studies have systematically and adequately examined the 

sources of the transformation. This study explains the Vietnam agriculture transformation as 

a result of technical change, and policy change. In addition, researchers have been finding a 

growing discrepancy in agricultural performance in favor of the Mekong River delta over 

the Red River delta. This analysis, however, provides evidence that this received view is no 

longer sustainable. 

The second study in Chapter 3 makes several contributions to technology impact 

assessment in the rice sector. Firstly, it is among the first to examine how adoption of hybrid 

rice varieties affect farm productivity and technical efficiency measures using panel data. 

Our panel estimates on the matched sample from PSM show that the fixed-effects estimators 

can eliminate selection on unobservables as long as they are time-invariant or uniform across 

groups of farmers. Secondly, we propose a simple way to accommodate for direct 

comparisons of the base productivity which is irrespective of input application rates (Barrett 

et al., 2004), and factor productivity differences between rice seed technologies in a 

stochastic framework. Finally, in contrast to the common findings on positive impacts of 

hybrid rice seeds, this analysis documents a negative impact of hybrid rice seeds in Vietnam 
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between 2006-2016. The analysis is, therefore, important when seeking to draw policy 

implications regarding rice technology in the post-Green Revolution period. 

The third analysis in Chapter 4 makes one important contribution to the existing 

literature on climate impact assessment. Prior panel Ricardian models have assumed 

agricultural market variations to be common shocks to all households. Our panel Ricardian 

model allows for heterogeneous price feedbacks across regions with different crop choices. 

We also relax the assumption of the additive separability of climate effects. Our results 

demonstrate that while assuming homogenous market shocks biases climate estimates, the 

likely consequences of ignoring climate interactions is severely misleading. Our climate 

impact simulation documented marginal losses due to the projected changes in long-term 

climate. 

The fourth empirical analysis in Chapter 5 is the first climate-induced adaptation 

analysis in Vietnam. It is also the first climate-induced crop choice model which has taken 

into account differentiated market shocks to different land use alternatives. Modelling land 

use choice is complicated due to several constraints on the choice of crops for a particular 

farmland plot. We consider the heterogeneity of farmland characteristics in the Fractional 

Multinomial Logit model by clustering the model by household. Hypothesis tests confirmed 

the significance of accounting for heterogeneous market shocks in explaining climate-

induced adaptation when modelling the sensitivity of land use choice. The allocation of 

farmland in Vietnam is found to be sensitive to climatic conditions which is in line with 

empirical findings for China (Wang et al., 2010), Germany (Chatzopoulos & Lippert, 2015), 

South America (Seo & Mendelsohn, 2008), and Africa (Kurukulasuriya & Mendelsohn, 

2007). Seasonal climates exert heterogeneous impacts on land use shares for different crops. 

The simulation indicates large shifts in areas allocated to cereals towards annual crops 

between 2030 and 2100. 
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1.5. Thesis outline 

The rest of the thesis is organized as follows: 

Chapter 2. An agro-economic history of the Vietnam rice sector 

Chapter 3. Productivity impacts of hybrid rice seeds in Vietnam 

Chapter 4. Measuring the impact of climate change on agriculture in Vietnam: A 

panel Ricardian analysis 

Chapter 5. Farm-level adaptation to climate change in Vietnam: Investigating the 

uptake of crop substitution 

Chapter 6 concludes the dissertation. 
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Chapter 2. An agro-economic history of the Vietnam rice sector 

 

Abstract. The Vietnam economy and its agriculture have undergone intensive transformation 

since the reforms in the late 1980s. From a devastated country with barely any prospect for 

development, Vietnam transformed into a developing country with high annual growth rate 

and fast reduction in headcount poverty. Agriculture has been important as it employs a large 

portion of the rural population. Researchers have found the faster development of rural South 

economy, relative to the North. This paper employs an historical approach to explaining the 

transformation of Vietnam agriculture, with an emphasis on the rice sector. It argues that in 

contrast to common perceptions, the rural North, and particularly the Red River delta, 

outperformed the Mekong river delta in terms of rural income despite the disproportionate 

distribution of reform effects due to limited landholdings. Future sustainable development of 

the agriculture depends on how it overcomes the negative impacts of changing climate and 

market uncertainty. The development of the Red River delta agriculture is facing additional 

challenges due to limited land endowments and inherent land fragmentation. 

 

Keywords: history, Vietnam, rice, transformation, Red River delta, Mekong River delta 

 

2.1. Introduction 

 The on-going success of the agricultural sector has been attributable to the fast and 

steady economic performance of Vietnam. In the early 1980s, Vietnam was one of the five 

poorest countries with a gross domestic product (GDP) per capita of about US$130 per year 

(Glewwe, 2004). The economy was characterized by a centrally planned system with barely 

any markets. Rice yield stagnated at around 2 tons per hectare while rice output per capita 

decreased down to the lowest point since 1955. After a series of reforms in the late 1980s, 

Vietnam emerged as a rice exporter. At the same time, the agricultural share of GDP declined 
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from 34% in 1985 to approximately 16% in 2016 (General Statistics Office [GSO], 2016b). 

The annual agricultural growth of 4.8% (OECD, 2015) and equitable income distribution 

resulted in a fast reduction in headcount poverty in rural areas, from 70% in 1993 to 10% in 

2006 (McCaig et al., 2009). At the national level, total income per capita increased by 17.3% 

per annum while income from crop production increased at a rate of 12.3% per annum in the 

period 1993 - 2014 (General Statistics Office [GSO], 2016a; State Planning Committee & 

General Statistics Office, 1994). 

Several researchers have tried to explain the impressive performance of the Vietnam 

economy and its agriculture. Reform policies during the decades have been attributable to 

the overall economic transformation (Glewwe, 2004). The decollectivization (Pingali & 

Xuan, 1992), and agricultural technology (Ut & Kajisa, 2006) had positive impacts on 

agricultural productivity. The liberalization of domestic markets and removal of export 

barriers resulted in higher rice prices, lower imported fertilizer cost (McCaig et al., 2009; 

Brandt & Benjamin, 2002), and decreased spatial output prices (Brandt & Benjamin, 2002; 

Goletti, 2000). However, spatial differences exist between the rural North and the rural South 

economies. The rural North-South income ratio decreased from 0.87 in 1993 to 0.79 in 2006 

(McCaig et al., 2009). 

Although several researchers have found the divergence in economic performance 

across regions (McCaig et al., 2009; Minot et al., 2006; Brandt & Benjamin, 2002), the 

literature on the driving forces of the differences has been scarce. Jerez (2018) argued that 

the smallholdings and excessive land fragmentation in the Red River delta resulted in 

stagnant agricultural practices in which farmers live on subsistence farming without real 

income growth, relative to the transformative Mekong River delta. However, the author's 

opinions on the economic performance of the two deltas are misleading as they are drawn 

from the data for the North and the South as a whole, not for the two deltas. 
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 This chapter applies an historical approach to explaining the transformation of 

Vietnam agriculture with an emphasis on the rice sector. It argues that the impressive 

performance of the agricultural sector has been the outcomes of policy, institutional, 

technological, and infrastructural changes. Despite the disproportionate distribution of 

reform effects due to different land endowments, farmers in the Red River delta 

outperformed their counterparts in the Mekong River delta in terms of income growth. In 

addition to the faster increase in salary, agricultural incomes in the Red River delta have 

improved more than what Jerez (2018) and other researchers have argued. The sustainable 

success of Vietnam agriculture depends on how it overcomes the emerging challenges. 

2.2. The dynamics of the Vietnam rice sector 

2.2.1. Agricultural performance 

 Vietnam has undergone a fundamental transformation from a centrally planned 

economy to a regulated market one since the Doi Moi1 initiated in 1986. In the early 1980s, 

Vietnam was one of the five poorest countries with low economic growth and high inflation 

(Glewwe, 2004). With a series of policy changes in December 1986, Vietnam transformed 

itself into one of the most successful countries in the world in terms of economic growth, 

poverty reduction and increased household welfare (McCaig et al., 2009; Glewwe, 2004). 

While maintaining a high economic growth of more than 5% per annum in the period 

1990 - 2015, Vietnam has been achieving a substantial reduction of the relative weight of 

agriculture to manufacturing industry, from 36% in 1986 to 16% in 2016. In comparison 

with other Asian countries with similar economic conditions in the 1980s, Vietnam's 

agricultural performance outperformed Thailand, Malaysia, the Philippines, and other 

selected countries in the period 1981 - 2019. 

 
1 The comprehensive reform proposed in the Sixth Congress of Vietnamese Communist Party in 1986 which 
shifted the Vietnam economy from a centrally planned to a regulated market economy. 
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Figure 2.1. Growth in agricultural production in selected countries, 1981 - 2019 

Source: FAO stats database online 

With a large proportion of the population engaged in agriculture, improvements in 

agricultural productivity and rural household incomes played a pivotal role in economic 

growth and equity. Rural household income rose by 11% per annum in the period 1993 – 

1998 (Brandt & Benjamin, 2002), and by 7% per annum for the period 2002 - 2014 

(Benjamin et al., 2017). Although there have been differences in income growth across 

regions, income inequality, measured by the Gini coefficient, decreased from 0.45 in 1993 

to 0.36 in 2014 (Jerez, 2018; Benjamin et al., 2017). The main reasons for the increase in 

household incomes were increased earnings of agricultural workers (Benjamin et al., 2017; 

Ravallion, 2008) and off-farm job opportunities (Benjamin et al., 2017). Agricultural 

population decreased from 70% in 1990 down to 44% in 2015 indicating the constant release 

of labor out of agriculture. However, agriculture remains important in the Vietnam economy. 

2.2.2. Rice production and agricultural technology change during the decades 

Rice plays a pivotal role in Vietnamese agriculture as it accounts for more than 60 

percent of the total annual cropping area (GSO, 2016b). The development of the rice sector, 

therefore, has been crucial to the transformation of rural Vietnam. Apart from maintaining 
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food security, rice exports have been the engine of economic growth of the country. However, 

Vietnam agriculture, and particularly the rice sector, has undergone fluctuations which were 

partly a result of the historical production system. 

Prior to the Reunification in 1975, the North underwent a collectivization process in 

which peasant families belonged to a cooperative while the South maintained private 

agriculture. The whole country experienced increases in rice production of 2% in the period 

1950 - 1965. In the South, the Land to The Tiller program (Prosterman, 1970) resulted in 

increases in both rice area and yield for the period 1966 - 1975. On average, total area under 

rice cultivation increased at an annual rate of 3.18% while rice yield increased by 2.31%. In 

the North, the collectivization of agriculture resulted in less economic incentives for farmers 

(Pingali & Xuan, 1992) which in turn reduced the rice area by 0.24% per annum. 

The Reunification in April 1975 marked the collectivization in the whole country 

although it was weak in the South. While 99.4% of Northern farmers were members of an 

agricultural cooperative in 1986 (Pingali & Xuan, 1992), the collectivization of agriculture 

in the Mekong delta encountered resistance from peasants. Only 6% of farmers in the 

Mekong delta joined high-rank cooperatives. The collectivization of production and 

inappropriate output distribution based on working hours led to decreases in both rice area 

and yield. In the North in the period 1976 - 1981, rice area decreased by 0.26% per year 

while rice productivity decreased at a faster rate, 3.87% (Che et al., 2006). The country 

experienced a sharp decrease in rice availability. Rice output per capita decreased from 280 

kilograms in 1960 to about 220 in 1980 (Pingali & Xuan, 1992). Vietnam had to import rice 

while a significant proportion of farmers left their cooperative or left their land fallow. 

Facing food deficits in the North, the Central Politburo of the Communist party 

issued the Directive 100 CT in April 1981. This Directive shifted the collectivization of 

agriculture into a new form – the farmer contract system, which was analogous to the 
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Household Responsibility System in China in the late 1970s. Farmers were assigned to 

supply their cooperative an amount of output proportional to their land and labor while the 

provision of inputs and labor was furnished by the cooperative. Farmers had more control 

over their production and more incentive to work harder. This contract system had a positive 

impact on food production. Aggregate rice output in the period 1982 - 1987 increased by 

3.77% per annum in the North and by 4.58% in the South. 

Table 2.1. Rice production, North and South Vietnam 

Time period Growth in 

cultivated area 

per annum (%) 

Growth in yield 

per hectare per 

annum (%) 

Growth in total 

rice production 

per annum (%) 

Population 

growth rate 

(%) 

Vietnam     

1950-1955 2.79 -0.74 2.05 2.05 

1956-1965 0.33 2.30 2.63 2.72 

1966-1975 1.59 2.22 3.80 3.10 

1976-1981 1.14 0.82 1.91 2.60 

1982-1987 0.08 2.73 2.81 2.60 

1988-1994  2.35 3.14   5.56  2.07 

1995-2011 0.78 2.57 3.37 1.07 

2012-2019 -0.54 0.45 -0.09 1.19 

North Vietnam     

1950-1955 0.22 0.74 0.90 n.a 

1956-1965 0.85 -0.16 0.66 2.40 

1966-1975 -0.24 1.82 1.59 2.09 

1976-1981 -0.26 -3.62 -3.87 n.a 

1982-1987 -0.12 3.89 3.77 n.a 

1988-1994 -0.60 6.03 5.40 n.a 

1995-2011 -0.08 2.74 2.66 n.a 

2012-2019 -0.95 0.15 -0.80 1.40 

South Vietnam     

1950-1955 5.63 -2.06 3.59 n.a 

1956-1965 -0.13 4.81 4.64 3.30 

1966-1975 3.18 2.31 5.48 3.80 

1976-1981 -1.08 4.56 3.43 n.a 

1982-1987 -1.77 6.46 4.58 n.a 

1988-1994 -0.51 7.09 6.55  n.a 

1995-2011 1.21 2.47 3.72 n.a 

2012-2019 -0.37 0.57 0.21 1.01 
Note: n.a: Data not available 

Sources: All data for the whole country in the period before 1990 and the two regions before 1976 were taken 

from Pingali and Xuan (1992), data for the period 1990-2016 were taken from Statistical Yearbooks (various 

years). Other information in the table was taken from Che et al. (2006). 

The further privatization of agriculture in 1988 and liberalization of agricultural 

markets had positive impacts on rice production and farmer welfare. Private land use 



22 
 

entitlement gave farmers full control over production while the improvements in the rice 

market and input supplies resulted in higher income from production. In the early stage of 

the reform, from 1988 to 1994, both regions experienced decreases in rice areas, but average 

rice yield increased at a rate of 6.03% and 7.09% for the North and the South, respectively. 

At a national level, total rice production in the period 1995 - 2011 increased by 3.37% per 

annum in which improvement in rice yield made up the largest part. Rice production 

witnessed declines in the period 2012 – 2019 as a result of both declines in rice areas and 

yields in the two regions. This trend is contrary to the rising application of hybrid rice seeds 

and intense input levels in the same period. 

 Undoubtedly, the reforms contributed to the expansion of agriculture by 

strengthening land use rights and farm management autonomy, and by improving the 

efficiency of market operation. However, the continuous introduction and adoption of 

improved agricultural technologies has also been identified as a driver of Vietnam 

agriculture. The high yielding variety IR8 developed by the International Rice Research 

Institute was introduced into Vietnam in 1968. Its average yield was 4 tons per hectare, far 

higher than the yield of traditional varieties of 2 tons per hectare. This modern variety was 

soon accepted by southern farmers as the adoption rate increased from 1% in 1968 to 33% 

in 1975 (Ut et al., 2000). In the North, under a different name of NN8, this new seed was 

also welcomed. Until the early 1970s, nearly 50% of the cultivated area in the North was 

under NN8 variety (Xuan, 1995). 
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Figure 2.2. Rice yield, production and harvested area in Vietnam, 1961-2019 

Source: FAO stats database online 

The growth of rice production since the early 1980s to 2015 was remarkable. Rice 

yield increased from 3 tons per hectare in 1985 to 3.5 tons in 1993 before reaching a high of 

5.8 tons in 2018. Total rice production increased dramatically from 30 million tons in 2000 

to 45 million tons in 2015. The increase in rice yield over the period was associated with the 

rising application of improved seeds and chemical fertilizers. The country experienced a 

boom in the use of modern varieties as the adoption rate increased from 16.9% in 1980 to 

more than 94% in 2002 (Table 2.2). The constant release of modern varieties in the past few 

decades kept the momentum for the Vietnamese Green Revolution going. 

Table 2.2. Adoption of improved seed varieties by ecological region 
 Whole 

country 

Red 

River 

delta 

Mekong 

River 

delta 

Northern 

Highlands 

North 

Central 

South 

Central 

Central 

Highlands 

Southeast 

1980 16.9 52.9 9.7 4.7 10.1 17.3 2.3 9.3 

1985 28.5 68.4 26.4 6.4 11.8 23.0 9.8 16.3 

1990 47.5 78.5 48.3 30.8 17.6 47.6 44.3 41.3 

1995 76.2 90.5 79.8 63.8 62.0 60.8 75.2 79.7 

1998 87.2 92.2 87.7 81.2 87.1 81.9 83.0 91.3 

2002 94.2 96.3 99.5 84.5 87.1 88.2 77.2 87.6 
Source: Ut and Kajisa (2006). Data on farmland allocated to different rice varieties are not available after 2002. 
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The removal of fertilizer import barriers contributed to the rising application of 

chemical fertilizers in rice intensification. In the period 1980 - 2005, the use of chemical 

fertilizers rose steadily from more than 50kg/ha to 160 kg/ha. Despite a slight decrease in 

the application in the period 2005-2010 due to escalating prices, chemical fertilizer 

application increased dramatically from 160kg/ha in 2010 to 230kg/ha in 2015 as a 

consequence of lower import prices (OECD, 2015). 

Along with technology changes, farming techniques have also been modified to 

adapt to changing conditions. The constant release of new seed varieties with shorter growth 

periods resulted in higher cropping intensity (Agrifood Consulting International, 2002). In 

the South where the climate is more favorable, triple cropping is common while large 

farming plots resulted in a widespread of broadcast seeding. As a result, farmers in the 

Mekong River delta use more seeds than those in the Red River delta (Agrifood Consulting 

International, 2002). Manual transplanting has been the traditional farming technique in the 

Red River delta. Consequently, the Red River delta remains a labor-intensive agriculture. 

2.2.3. Rice marketing 

 Prior to the market reform in the early 1990s, the private sector was the main sector 

involved in agricultural production while the marketing of rice was restricted and 

characterized the State utilizing buying and selling cooperatives (Pingali & Xuan, 1992). 

Export of rice was restricted by export quotas and licenses while movement of rice from the 

South to the North had to undergo procedures similar to export (Goletti, 2000). Rice output 

was to be sold to the State with a price of 20% - 30% of market price (Che et al., 2006). A 

centrally planned system with barely any markets resulted in the stagnation of Vietnam 

agriculture (Che et al., 2006; Pingali & Xuan, 1992). 

  During the early phase of market liberalization, the private sector was encouraged to 

participate in the marketing of rice. However, rice export was still subject to barriers as State-
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owned enterprises (SOEs) were the only participants in rice exporting (Ghoshray, 2008). 

There exist huge gaps in size and assets between SOE and the private sector in the rice 

marketing chain. On average, a SOEs had an asset value of US$1,594 thousand while the 

number for private traders and millers was 3 thousand and 31 thousand, respectively (Goletti, 

2000, p. 11). However, the private sector was responsible for collecting, moving and 

distributing of 80 percent of rice produced in Vietnam. 

The further liberalization during the 1990s resulted in the removal of barriers to 

export and domestic trade (Resolution 140/1997/QĐ-TTg on 3/1997). Improved 

infrastructure across regions has given rise to local private traders. Therefore, the Vietnam 

rice marketing system is characterized by a complex web of relationships among agents. 

These relationships create different marketing channels. The main difference in marketing 

of rice in the Red River delta and the Mekong River delta is the consumers. Most of the rice 

surplus in the Red River delta is distributed domestically to other regions with rice deficit. 

Rice marketing in the Mekong River delta is export-oriented (Goletti, 2000). 

The liberalization of the rice market resulted in an increase of 30% in farmgate rice 

prices between 1993 and 1998 (Niimi et al., 2007). Despite institutional and infrastructural 

improvements in rice marketing, imperfections in the rice marketing system still exist. Large 

and consistent market margins reflect unexplained differences in rice prices across regions. 

In perfect markets, price differences across regions must be equal to transport costs (Goletti, 

2000; Minot, 1997). Minot (1997) found a 709 Vietnamese dongs difference in price per kilo 

of rice between the North and the South while transport cost just accounted for 42% of the 

margin. Goletti (2000), Agrifood Consulting International (2002), and Minot (1997) also 

documented no apparent trend in marketing margins of rice in Vietnam indicating no signs 

whether it would decrease. The plausible explanations for high price differences have been 
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domestic trade barriers (Minot, 1997), ineffective operations of private traders (Agrifood 

Consulting International, 2002; Goletti, 2000), and local nature of the marketing information. 

Table 2.3. Regional rice prices during the early phase of the reform 

Year Average wholesale price (VND/kg) 

North Central South 

1986 4,257 4,257 4,470 

1987 7,254 6,385 6,334 

1988 6,622 5,531 4,678 

1989 5,614 5,066 4,612 

1990 6,770 6,243 4,711 

1991 6,116 5,129 4,406 

1992 4,678 3,965 3,814 

1993 3,964 3,473 3,460 

1994 3,508 3,283 2,934 

1995 4,022 3,451 3,045 

1996 4,392 3,703 2,901 
Source: Minot (1997) (Prices are deflated to 2000 using GDP deflator from FAO stats database online) 

 The imperfect nature of the Vietnamese rice marketing system is also reflected in 

profitability across marketing agents. Although farmers in the Red River delta received a 

higher share of retail price than their counterparts in the Mekong River delta (83% versus 

71%), they got lower profits ($57 per ton versus $93 per ton) due to higher production cost 

(Goletti, 2000). Marketing agents in the Mekong River delta also got higher profits than 

those in the Red River delta despite their lower share of their marketing margin in retail price. 

On average, the unit profit of marketing agents in the Mekong River delta was US$55 per 

ton (18% of retail price) while the number for marketing agents in the Red River delta is 

US$34 (11% of retail price) (Goletti, 2000). 

  The removal of rice export quotas and licenses resulted in an asymptotic trend of 

domestic prices to international prices. However, fluctuations in international prices are 

partially transmitted into domestic prices reflecting the under-integrated nature of the 

Vietnam rice sector. Only 11% of price variations in the world rice market is transmitted to 

domestic prices while the number for Bangladesh and Pakistan is 74% and 41%, respectively 

(Robles, 2011). In addition, price shocks are slowly transmitted from one separate market to 

one another. It normally takes 2.6 months in Bangladesh or 3.53 months in Egypt for a price 
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shock to be transmitted to another market (Minot, 1997). In Vietnam, it may take up to 5.15 

months (Minot, 1997). The low integration of the Vietnam rice markets reflects the local 

nature of rice marketing system and policy insulation from the world food market. 

2.2.4. Rice exports and imports 

The land reform in 1989 had an immediate impact on rice production and export. 

After more than two decades of rice deficit, Vietnam exported more than 1 million tons of 

rice in 1989. However, the constraints on rice production still existed in the early stage of 

the reform. The further liberalization of output market and rice export resulted in the removal 

of export quotas while private enterprises also played their part in the export of rice. In the 

period 2001-2016, the export volume maintained an annual average of more than 5 million 

tons. 

Table 2.4. Average annual level of rice exports/imports during each period (1000 tons) 

 Period 1950-1964 1965-1981 1982-1988 1989-2000 2001-2016 

Export volume 160.00 9.90 84.57 2,500.00 5,073.40 

Import volume n.a 620.60 271.60 6.90 6.60 

Net export volume n.a -610.70 -187.03 2,493.10 5,066.80 

Source: Data for the period 1950-1964 were taken from Dawe (2002); data for other periods taken from FAO 

stat online database 

 The world rice market is thin with only 6% of total production being traded (Chen & 

Saghaian, 2016). Most of rice exports are from six countries, namely Thailand, Vietnam, the 

U.S, China, India, and Pakistan. Thailand is the largest exporter of rice with an average of 

40% - 50% of production being exported. Vietnam became the second largest exporter of 

rice, with an average of 5 million tons per year. Most of Vietnam rice exports are to other 

Asian countries. Given the thinness of the world rice market, exporters of rice may benefit 

from large transactions and market manipulation (Chen & Saghaian, 2016). However, 

Vietnam export prices are still low despite its share of 15% of the world rice exports. In 1990, 

export prices for Vietnam high-quality rice (5% broken) were 37% below Thai prices (Chen 

& Saghaian, 2016). 
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 Policy interventions were found to strongly affect both export quantity and price 

transmission. As rice is the most important calorie intake for domestic consumers (Agrifood 

Consulting International, 2002), price stabilization and insulation from world rice market 

shocks is considered necessary. Since the world food shock in 2007/2008, rice exports have 

been restricted to assure domestic food security (Resolution No. 63/2009/NQ-CP on food 

security dated 23 December 2009). Although Vietnam rice prices are cointegrated with Thai 

prices (Jamora & von Cramon-Taubadel, 2017; Chen & Saghaian, 2016), changes in export 

prices are slowly transmitted to domestic prices (Robles, 2011; Agrifood Consulting 

International, 2002). 

 Nghiem and Coelli (2002) estimated an annual growth of  3.3 percent in the rice 

sector between 1976 and 1997, which was above average agricultural productivity growth 

in other developing countries (Fulginiti & Perrin, 1998). However, there have been spatial 

differences in agricultural performance as Southern farmers were found to be better than 

their Northern counterparts at taking advantage of new opportunities offered by the reforms 

(Jerez, 2018; Benjamin et al., 2017; Brandt & Benjamin, 2002). The next section will discuss 

the differences in initial conditions (land endowments and wealth) while the following two 

sections focus on how these initial conditions affected the divergence of the two river deltas. 

2.3. Regional differences in initial conditions 

 Despite fundamental institutional reforms during the decades, the differences in 

factor endowments across regions remain unchanged which, in turn, posed different barriers 

to transformation for each region. It is important to understand the differences in initial 

conditions in order to explain the growing differences across regions. 

 The Red River delta experienced higher increases in rice productivity in the period 

1990 – 2016. However, Che et al. (2006), Kompas (2004), and Nghiem and Coelli (2002), 

among others, found the increases in total productivity were positive in the South while they 
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were negative in the North. They suggested that the differential incentives between the two 

deltas might lead to different responses. Jerez (2018) explained the differences between the 

two river deltas as a result of differentiated land endowments. Particularly, the smallholdings 

and excessive land fragmentation in the Red River delta resulted in a high-level equilibrium 

trap in which farmers produce at subsistence levels. The small endowments made the Red 

River delta a labor-intensive agriculture with diminishing returns to labor while the excess 

of labor did not leave the agriculture. This section contrasts the differences in farming land 

and household incomes over time to support a viewpoint of a more transformative Red River 

delta than what Jerez (2018) considered. 

Table 2.5. Farming land characteristics in the two river deltas 

 Year  1992 2002 2006 2010 2012 2014 2016 

1. Red River delta        

Household size 4.2 4.0 3.8 3.7 3.6 3.6 3.9 

Farm size (m2) 2,800 n.a 1,931 2,180 1,922 2,816 1,462 

Number of plots n.a n.a 5.8 5.1 4.7 4.2 3.7 

Average area of each plot n.a n.a 331 430 404 618 360 

2. Mekong River delta        

Household size 5.4 4.6 4.3 3.9 3.9 3.8 4.0 

Farm size 11,050 n.a 10,717 14,697 14,745 19,170 5,700 

Number of plots n.a n.a 2.9 2.9 2.9 2.6 2.7 

Average area of each plot n.a n.a 3,674 5,048 4,161 4,500 2,500 

Note: n.a: Data not available 

Source: State Planning Committee and General Statistics Office (1994); (GSO, 2016a); (CIEM, 2015) 

Table 2.5 shows an increase in farming land per labor in the Mekong River delta 

between 1992 and 2016. The Red River delta has been densely populated, with a population 

density of over 1000 persons/km2 in colonial time under the French rule. The area under rice 

cultivation remained unchanged since 1960 (626,000 hectares arable and 1 million hectares 

cultivated) (Jerez, 2018). The average landholding in 2016 was 1.400m2, equivalent to 25% 

of that of their counterparts in the Mekong River delta. The effects of inheritance and 

household division made land become increasingly fragmented during the century. It was 

estimated that there were 16 million parcels in 1937, with less than 0.089 hectares per parcel 
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on average. This number increased up to 17 million in 1941 (Jerez, 2018). A typical peasant 

family in the Red River delta cultivates on 3.7 separate parcels with each parcel averaging 

360 m2 in 2016. 

The consequences of excessive fragmentation have been documented in the literature 

(Barrett, 1996; Feder, 1985; McPherson, 1982; Sen, 1966). Land fragmentation causes 

difficulty in rationalizing production cost and reduces efficiency of labor. It hinders the 

adoption of mechanization (Orea et al., 2015; Pannell et al., 2006). In addition, it deters the 

release of excessive agricultural labor to other sectors (Jia & Petrick, 2014; Kawasaki, 2010). 

With a limited farming land, agricultural surplus in the Red River delta is less than that of 

their counterparts in the Mekong River delta. In 2014, the portion of output sold by farmers 

in Ha Tay province was just 25%, relative to nearly 40% in An Giang province of the 

Mekong delta (CIEM, 2015). However, in contrast to common perceptions, farming 

households in the Red River delta have been doing better than those in the Mekong River 

delta in terms of income generation. 

Due to data constraints, this section focuses on the income evolution in the two river 

deltas during the two decades after the reforms. The heavy dependence on agriculture in the 

early stage of economic transformation was reflected in the income structure across regions. 

Income from crop production accounted for roughly 40% of total income in 1992 for both 

regions. The less developed Northern economy was reflected in a smaller proportion of 

income from wages in the Red River delta. On average, income from wageworkers 

accounted for just 16.6% of total income for a rural household in the Red River delta while 

the number for those in the Mekong River delta was 22.9%. With little land endowments 

and less off-farm job opportunities, rural households in the Red River delta diversified 

income activities from sidelines which made up 36.5% of total income. 

 



31 
 

Table 2.6. Income structure of rural households in the two river deltas 

Period 1992 2002 2008 2014 

Annual growth rate 

1992-

2002 

2002-

2008 

2008-

2014 

1992-

2014 

I. Monthly income per capita (1000 VND) 

1. Red River delta         

Total 91.3 353.1 1,048.5 3,277.5 16.2 19.9 20.9 18.6 

Crop 36.5 80.2 173.9 297.5 9.2 13.8 9.4 10.5 

Sidelines 33.3 91 259 764.9 11.8 19.0 19.8 16.1 

Wage 15.2 118.5 397.2 1,742.1 25.7 22.3 27.9 25.4 

Other incomes 6.3 63.4 218.4 473 29.1 22.9 13.7 22.8 

2. Mekong River delta         
Total 105.4 371.3 939.9 2,326.8 15.0 16.7 16.3 15.9 

Crop 42.9 100.8 281.1 491.5 9.9 18.6 9.8 12.3 

Sidelines 35.4 126.5 279.6 710.5 15.2 14.1 16.8 15.4 

Wage 24.1 92.7 244.4 783.2 16.1 17.5 21.4 18.0 

Other incomes 3.0 51.3 134.8 341.6 37.0 17.5 16.8 25.3 

II. Income structure (%) 

1. Red River delta         

Crop  39.9 22.7 16.6 9.1     

Sidelines 36.5 25.8 24.7 23.3     

Wage 16.6 33.5 37.7 53.1     

Other incomes 7 18 21 14.5     

2. Mekong River delta         

Crop 40.7 27.1 29.9 21.1     

Sidelines 33.6 34.1 29.7 30.5     

Wage 22.9 25.0 26.0 33.7     

Other incomes 2.9 13.8 14.3 14.7     
Source: State Planning Committee and General Statistics Office (1994); (GSO, 2016a) 

In the period 1992 - 2002, despite higher income growth, monthly income per capita 

of 353.1 units of farmers in the Red River delta was still lower than 371.3 in the Mekong 

delta. In the period 2002 - 2008, the Red River delta surpassed the Mekong River delta in 

terms of total income and income growth. On average for the period 1992 - 2014, the annual 

income growth in the Red River delta was 18.6%, higher than 15.9% in the Mekong delta. 

Consequently, the income ratio for the Red River delta and Mekong River delta in 2014 was 

1.4 although farmers in the Red River delta began with lower income in 1992. 

Improvements in incomes for both deltas were pronounced for all components. Crop 

production made up the largest part of income for rural households in the two deltas in 1992 
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(40%). Improvements in land productivity, declined input prices and increased in output 

prices during the market liberalization benefited most farmers. Between 1992 and 2014, 

income from crop production increased at a rate of 10.5% for farmers in the Red River delta. 

With better land endowments, and agricultural surplus as a consequence, farmers in the 

Mekong River delta maintained higher crop income growth, at 12.3%. To 2014, the crop 

income ratio for the Mekong River delta and the Red River delta was 1.65. 

 The higher growth rates of other incomes are crucial for the income revolution of the 

two deltas although they were more impressive in the Red River delta. Crop production 

declined in its relative term in both regions. The Red River delta experienced a 30.8% cut-

off of the share of crop income, from 39.9% in 1992 to 9.1% in 2014. In the meantime, 

income from sidelines and wages maintained higher growth rates to become the two most 

important sources for this delta. These movements remarked the release of excessive 

agricultural labor. To 2014, wages accounted for more than half of total income for rural 

households in the less endowed Red River delta while the Mekong River delta experienced 

just more than 10% improvement in wage share, from 22.9% in 1992 to 33.7% in 2014. 

 If the Red River delta had been stuck in a stagnant phase as what Jerez (2018) argued, 

the labor-intensity could not have allowed the release of agricultural labor to other sectors. 

If the labor had not been released, the income structure would not have undergone such a 

fundamental change. The more detailed data we have in this paper provide evidence of a 

more transformative Red River delta than previous thoughts. The next two sections focus on 

how land endowments affect agricultural outcomes on the two river deltas. 

2.4. Land endowments and differential economic incentives 

 With a limited farming land, farmers in the Red River delta have been working hard 

to maintain higher income. However, the smallholdings constrained income growth from 
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agriculture. Less agricultural surplus and lower input use exposed farmers in the Red River 

delta to less incentive from the liberalization of agricultural markets. 

2.4.1. Farm size and rice yields 

 The inverse relationship between farm size and productivity has been investigated 

extensively in literature so as to answer the oldest puzzle in agricultural economics. Sen 

(1966) theorized the productivity gap between small peasant and capitalism farms as a 

consequence of the shadow cost of labor. The lower cost of family labor results in a more 

labor-intensive production by peasant families. Therefore, small farms are often more 

productive than large farms in terms of land productivity. Feder (1985) pointed out that hired 

labors are more intensively used on large farms than on small farms. Because wage laborers 

tend to shirk if they are not supervised perfectly, larger farms tend to be less productive than 

smaller farms. Barrett (1996) emphasized that market imperfections make smallholding 

households oversupply labor on their farms so as to reduce price risks when buying from the 

market. In contrast, largeholding families who are often net sellers under-supply labor in 

order to reduce their exposure to price variations when selling to market. Therefore, smaller 

farmers are more productive than larger farms due to market imperfections. 

  Table 2.7. Farm size, real wages, and land productivity in the two river deltas 

Year 1992 2002 2008 2014 

Red River delta     

Average farm size (m2 per household) 2,800 n.a 1,975 2,816 

Average number of workdays per hectare (for rice) 246 n.a n.a 150 

Share of hired labor in production cost (%) 1.57 n.a n.a 10.80 

Agricultural wage (1000 VND/male work day) 7.49 13.59 28.06 128.53 

Rice yield per hectare (quintal) 37.71 56.40 58.90 60.20 

Mekong River delta         

Average farm size (m2 per household) 11,050 n.a 12,034 19,170 

Average number of workdays per hectare 96 n.a n.a 55 

Share of hired labor in production cost 16.43 n.a n.a 6.60 

Agricultural wage (1000 VND/male work day) 15.01 17.51 25.53 113.26 

Rice yield per hectare (quintal) 31.19 46.20 53.60 59.40 

Note: n.a: Data not available. Data on agricultural wage are deflated to 1992 
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Source: State Planning Committee and General Statistics Office (1994); Pingali et al. (1997); Barrett (2016); 

(GSO, 2016a); World Bank Group (2016) 

Given the imperfections of rural labor markets in Vietnam in the early phase of the 

reform, excess labor made the Red River delta the most labor-intensive agriculture within 

the country. With an average farmland area of 0.2 hectares per household, the number of 

workdays per hectare in the Red River delta in 1992 was 246 while the percentage of hired 

labor used in rice production was just 1.57%. Peasant households in the Mekong River delta 

had larger landholding with an average of 1.1 hectares for the same year. Labor use in rice 

production was less than in the Red River delta, with an average of 96 workdays per hectare. 

  During the 1990s and early 2000s, the lack of off-farm job opportunities for rural 

labor was pervasive indicating low opportunity cost for peasant families. The excessively 

fragmented land in the Red River delta was a decisive factor contributing to higher labor-

intensity with diminishing returns to inputs. Pham (2006) showed that output elasticities to 

inputs were low while the elasticity to the number of plots was high indicating a potential 

gain for rice production from land consolidation. Barrett (2016) found the relationship 

between land fragmentation and labor intensity indicating dual benefits of land consolidation 

on both labor release and farm profits. However, the inverse relationship between farm size 

and productivity dampened, especially in areas with higher real wages (Barrett, 2016). In the 

period 2008 - 2014, the average rice yield in the Red River delta showed little increase while 

rice yield in the Mekong River delta increased from 53.6 up to 59.4. The rice yield gap 

between the two river deltas contracted. 

Does the decreasing yield gap between the two river deltas reflect better performance 

of largeholding farmers in the South or worse farmers in the North? Neither answer is 

complete because farmers in both regions have been doing well. Considering the changes in 

agricultural wages, the faster increase in agricultural wages is, the slower increase in rice 

yield is. The fast increase in real wages would dampen the farm size-productivity 
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relationship in the Red River delta. In 2014, rice yields in the two river deltas were similar 

at around 60 quintals per hectare. The gap in rice yields between the two deltas decreased 

significantly as a consequence of improvements in the labor markets. 

2.4.2. Liberalization of output market 

 Given the initial differences in local rice markets, the liberalization of output market 

had different impacts on household welfares. Goletti (2000) estimated a 1.4% decrease in 

nation-wide rice prices due to the liberalization of the domestic rice market. While the 

Mekong River delta benefited from a 5.2% increase in rice price, the Red River delta 

experienced a 9.4% decrease. However, the removal of export barriers resulted in a 25.9% 

increase in paddy prices Goletti (2000). The combined effect of removing both domestic and 

export barriers resulted in a 19.9% increase in rice prices. 

 The income effect of changes in rice prices on households depends on the elasticity 

of demand and supply, income structure and production scale. For households that were not 

rice producers, the increase in rice prices resulted in higher expenditure as the elasticity of 

demand for rice was low. The average price elasticity of demand for rice varied between 0.2 

to 0.38 across regions (Goletti, 2000). However, because the majority of the population were 

engaged in agriculture, increases in rice price due to market liberalization had positive 

income impact on a large rural population. On average, a 10% increase in rice prices resulted 

in a 0.8% increase in real income for rice producers. 

 The Red River and Mekong River deltas had similar proportions of net rice sellers, 

at around 43% - 45%. Due to smallholdings, net marketable surplus in the Red River delta 

was quite small, 22%, as compared with 85% in the Mekong River delta. The difference in 

land endowments for rice production resulted in differentiated gains from the increase in rice 

prices. Goletti (2000) estimated an average of 0.8% increase in household income due to a 
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10% increase in rice price for the Red River delta while the number for the Mekong River 

delta is 1.4%. 

2.4.3. Decentralization of input supplies 

The allocation of agricultural inputs in the North since 1960, and in the whole country 

since 1976, was made by the government. This top-down system resulted in an increase in 

administrative cost and higher input prices. The first stage in decentralizing the input markets 

was the decentralization of input supplies introduced in 1988. The rising competition among 

the marketing agents in supplying agricultural inputs resulted in improvements in both 

quantity adequacy and prices of input markets. Niimi et al. (2007) shown a 23% decrease in 

fertilizer prices between 1992/1993 and 1997/1998 which was attributable to the 

decentralization of the input supply. 

 Changes in fertilizer prices affect rice production in several ways. Because chemical 

fertilizers are an important input in production, reductions in fertilizer prices are associated 

with lower production cost. In addition, fertilizers are substitutes for labor in rice production. 

The relative decline in fertilizer prices to the increase in labor wages might encourage the 

use of fertilizers as a substitute for on-farm labor. 

 The Mekong River delta agriculture relies more on non-labor inputs relative to a 

labor-intensive agriculture in the Red River delta. Fertilizer accounted for 42% of total cost 

in An Giang province (CIEM, 2015) while just 35% in Ha Tay province of the Red River 

delta. In the period 1993 - 1998, a 23% decrease in fertilizer prices would lead to a 9.6% 

decrease in total cost for farmers in Mekong River delta. With a smaller proportion of 

chemical fertilizers in total inputs, farmers in the Red River delta gained an 8% decline in 

production cost. In addition, the decline in labor use in both deltas is clear in Table 2.7. 

Although the Red River delta remains a labor-intensive agriculture, the number of workdays 

per rice hectare decreased from 246 in 1992 to 150 in 2014. The Mekong River delta also 
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experienced a withdrawal of labor from rice production as the labor use decreased from 96 

to 55 workdays for the same period. 

 Excessive land fragmentation has made the Red River delta the most labor-intensive 

agriculture within the country. Although land productivity was high, the limited agricultural 

surplus exposed farmers in the delta to less incentive from market liberalization. However, 

improvements in the rural labor market and wages helped to dampen the inverse relationship 

between farm size and productivity across regions and to release excessive agricultural labor. 

2.5. Livelihood strategies and differentiated benefits from agricultural support 

Income diversification is a pervasive strategy in rural economies. Given low asset 

endowment, labor and output market imperfections, and unsecured risks, farmers resort to 

diversification to generate and stabilize their incomes (Barrett et al., 2001). Because the 

choice to be a subsistence farmer depends on landholdings, smallholders are exposed to not 

only fewer market incentives but also less benefit from agricultural support. 

A subsistence farming household generates their income through a diversified group 

of activities although agriculture accounts for the most part. Their participation in 

agricultural markets is limited as most of the agricultural output is for consumption. Another 

critical point in their livelihood is the dominant role of staple crops in their agricultural 

production. The World Bank (2007) reported 80% of a subsistence farming household 

income in Vietnam was generated from agriculture while the proportion of staple crop 

accounted for 73% of agricultural output. For mixed households, although the importance of 

agriculture remained the same as it did to subsistence farming one, the relative role of staple 

crop declined below 70% of agricultural output. Commercial farms put an emphasis on high-

value crops as they made up 39% of agricultural outcomes (World Bank, 2007). 

The choice to be a subsistence household or a market-entrant or market-oriented 

household depends on net marketable surplus, and as a consequence, on land endowments. 



38 
 

Purcell (2011) estimated that a four-person Vietnam household would need a minimum 

annual harvested area of rice of 0.15 hectares to support their minimum living expenses. 

With an average arable land of 0.2 hectares, a typical farming household in the Red River 

delta can be regarded as a subsistence unit. In the Mekong River delta, where land 

endowments are more generous, better production capacity results in a commercial 

agriculture. During the initial years of the liberalization, a small portion of farming 

households was subsistence-oriented. However, improvements in market condition 

diminished the subsistence livelihood in the delta by 2006. 

Vietnam rice producers benefited from support policies as they accounted for more 

than 7% of their gross revenues (OECD, 2015). However, farmers with larger farming land 

in the South gained more than their counterparts in the North. With a net marketable output 

of 40% (CIEM, 2015), an average producer support of 7% resulted in a 2.8% increase in 

gross receipt for farmers in the Mekong River delta. With a limited farming land and a net 

marketable surplus of 25%, farmers in the Red River delta just benefited from a 1.75% 

increase in their output sales resulted by supportive agricultural policies. Given the share of 

crop production in total income of 80% and 25% for farming households in the Mekong and 

the Red River delta, respectively, the difference in marketable output results in a 2% higher 

total income originating from supports for farmers in the Mekong River delta, ceteris paribus. 

2.6. Constraints to Vietnam agriculture 

 A bottleneck for the development of Vietnam agriculture is the smallholdings and 

excessive land fragmentation although the situation was more severe in the Red River delta 

than in the Mekong River delta. In 2001, 67% of the peasant families in the country had 

arable land of no more than 0.5 hectares while 26% of them had an area of no more than 0.2 

hectares. Although the land distribution did not vary much in the period 2001-2011, the 

fragmentation became more severe in the smallest landholding groups due to household 
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partition. The proportion of farming households with arable land less or equal to 0.2 hectares 

increased to 35% while the percentage of those households with farming land from 0.2 to 

0.5 hectares decreased from 41% in 2001 to just 34% in 2011 (Figure 2.3, Figure 2.4). 

 

Figure 2.3. Farm size distribution in Vietnam 

Source: World Bank Group (2016) 

 

Figure 2.4. Farm size distribution across regions, 2010 

Source: Tran et al. (2013) 

The small land endowments and excessive land fragmentation not only prevents 

commercial agriculture but also raises difficulties in technology adoption and rationalizing 

production costs (Orea et al., 2015; Pannell et al., 2006; Moreno & Sunding, 2005). The 

situation is more pronounced in the North with higher population densities, relative to the 

South. The Red River delta is the most fragmented delta where the majority of farming 

households (62%) cultivated a farming area of no more than 0.2 hectares in 2010. With lower 

population pressure, 60% of farmers in the Mekong River delta have farming land of over 
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0.5 hectares while the number of those who depend on 0.2 hectares of land or less just 

account for 7% of total peasant families. 

The sustainable success of Vietnam agriculture has been contingent on agricultural 

technology, and improved market and infrastructure conditions. While the easiest part of 

agricultural growth has been reaped through technology adoption, future development of 

Vietnam agriculture is facing numerous constraints. The excessive land fragmentation in 

Vietnam also raises difficulties in promoting a commercial and effective agriculture. Output 

prices are prone to unpredictable fluctuations. Prices act as profitability signal guiding 

farmers what to grow and how much to invest in agricultural innovation. Despite the general 

upward trend in global food prices, Vietnam rice prices showed a slowly increasing pattern. 

Official statistics from FAO show that Vietnam Producer prices reached a peak in 2009 

before a declining trend until 2016. The slow increase in real output price but with 

considerable fluctuation across space and time is expected to negatively affect rice farmers' 

profits and innovation behavior. 

The future development of Vietnam agriculture is expected to face additional 

challenges due to environmental changes. Vietnam is expected to be among the countries 

hardest-hit by future climate changes (Dasgupta et al., 2009). Given the limited adaptation 

capacity, likely consequences of changing climatic conditions are believed to be serious and 

present threats to hunger eradication, poverty reduction, and sustainable development. 

2.7. Conclusion 

After the Reunification between North-South in 1975, Vietnam faced major poverty 

challenges. A long history under the French rule and anti-foreign wars left devastating 

legacies for both human well-being and economic development. The most important 

infrastructures in the North were destroyed. A large area of land could not be brought back 

to cultivation as a result of being severely poisoned by intensive pesticide spray. The whole 
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economy was exhausted while foreign aid from the Socialist bloc to the North and American 

aid to the South stopped. The collectivization process contributed less economic incentives 

for farmers. The devaluation of domestic currency in the mid of 1980s caused escalating 

prices which in turn made the situation worse. Ten years after the victory over the American 

and Allied forces, Vietnam was among the five poorest countries with barely any prospects 

for the future. 

 The reform series initiated in 1986 opened up the economy and its agriculture to 

market incentives. Agricultural research and extension played an important role in 

agricultural productivity growth. Increasing governmental supports for the agriculture 

benefited farmers across regions. Several researchers have found the income gap in favor of 

farmers in the South. Jerez (2018) argued differentiated land endowments was a major 

source of economic divergence between the Red River delta and the Mekong River delta. 

 This chapter provided evidence of a more transformative Red River delta than prior 

analyses have presented. It contended that rural peasant families in the Red River delta have 

been working hard to maintain higher income growth, relative to their counterparts in the 

Mekong River delta. The key to the transformation of the Red River delta was the growth in 

income from wages and sidelines. Despite limited farming land, farmers in the Red River 

delta managed to enjoy the similar income growth from crop production. Nevertheless, small 

land endowments exposed farmers in the delta to less incentive from market liberalization, 

compared with peasants in the Mekong River delta. Albeit more pronounced in the Red River 

delta, improved labor markets also helped to release agricultural labor in both deltas. 

However, excessive land fragmentation due to high population density has made the Red 

River delta inherently labor-intensive. Prospects for the future are also challenging due to 

constraints of climate condition and market fluctuations. 
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Chapter 3. Productivity impacts of hybrid rice seeds in Vietnam 

 

Abstract: Hybrid rice varieties have been regarded as the most important measure addressing 

food security in developing Asian countries. The success story of hybrid rice production in 

China motivated the Vietnamese government to import hybrid seeds as an effort to increase 

rice productivity. Despite increased use of hybrid rice seeds and rising input intensity, rice 

productivity growth has slowed down since 2006. Using a ten-year panel of households, this 

paper analyzes the productivity impacts of hybrid rice seed adoption in the post-Green 

Revolution era. We combine Propensity Score Matching in adoption decisions with panel 

frontier models to control for selectivity bias. The frontier models are specified to allow for 

direct comparisons of the base productivity, factor productivity, and technical efficiency 

between hybrid and the current rice varieties. The findings show that although hybrid rice 

varieties affect factor productivity, they provide a lower base productivity of 0.2% indicating 

a deficiency of the seed technology in the period studied. The time-trend variable in the model 

also indicates a neutral inward shift in rice technology between 2006 and 2016. Large technical 

efficiency gaps exist in rice production suggesting a potential benefit of improvements in 

management skills with the existing technology. 

 

Keywords: Propensity Score Matching, hybrid rice, selection bias, stochastic frontier, Vietnam 

 

3.1. Introduction 

The development of high-yielding rice varieties since the mid-1960s has made a vital 

contribution to food security and livelihoods in developing countries. The success of these 

varieties was characterized as a Green Revolution (Evenson & Gollin, 2003). Impact 

assessments have been carried across continents including Asia (Villano et al., 2015; Yang 

et al., 2007; Hossain et al., 2006; Umetsu et al., 2003; Rahman, 2003; Jin et al., 2002; Huang 

& Rozelle, 1996; Rosegrant & Evenson, 1992), Africa (Abiodun Elijah et al., 2017; Dontsop 
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Nguezet et al., 2012; Ayinde et al., 2009; Minten & Barrett, 2008; Barrett et al., 2004). 

These analyses confirm the significance of high yielding varieties in improving productivity. 

Evenson and Gollin (2003) provided a review of the impacts of the Green Revolution from 

1960 to 2000. Their work shows that high-yielding varieties contributed a 0.8% per annum 

increase in rice productivity. In addition, a significant part of the productivity gain in the late 

Green Revolution was due to the release of new varieties. 

While scientists were optimistic about the Green Revolution impact during the latter 

half of the twentieth century, future prospects for sustaining the growth momentum in food 

production is still an open debate. Ruttan (2002) expressed his concern over biological 

technology in developing regions. Given the easiest productivity gains have been achieved, 

hybrid rice has been regarded as the most important technology tackling the food security 

concern (Food and Agriculture Organization, 2014) in populous Asia. It has been shown to 

provide a way out of food production stagnancy in China where more than half of the rice 

area is under hybrid rice with a productivity superiority of 15-20% over other inbred rice 

varieties (Jin et al., 2002; Huang & Rozelle, 1996). In other Asian countries such as the 

Philippines, India, Bangladesh, and Vietnam, the production with hybrid rice has been 

largely dependent on imported hybrid rice seeds from China (Food and Agriculture 

Organization, 2014; Aldas & Hossain, 2003) due to limited biotechnology capacity. The 

mixed findings on the productivity impacts of hybrid rice varieties have raised a common 

concern over the prospect for the China’s success story to be replicated outside China (Food 

and Agriculture Organization, 2014; Janaiah et al., 2002). 

Vietnam serves an interesting case for hybrid rice technology assessment due to its 

important role in global rice production. Rice has been the dominant crop accounting for 

more than 60% of the total cropping area (General Statistics Office, 2016). Vietnam is the 

second largest exporter of rice (Ha et al., 2015; Fulton & Reynolds, 2015), with an average 
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of 5 million tons per year between 2005 and 2015. Improved inbred varieties were the most 

popular cultivars as replacements for local varieties with low productivity. Since 2004, 153 

hybrid rice varieties have been introduced into production, alongside other inbred high-

yielding rice varieties, raising the rice area under high-yielding rice varieties up to more than 

90% (Cuc et al., 2008). Imported seeds from China accounted for roughly 80% of total 

hybrid seed demand. Despite the application of hybrid rice seeds and intensive use of 

fertilizers (OECD, 2015), rice productivity showed little responsiveness as the annual 

productivity growth continued to decrease from 2.8% between 2000-2005 down to 0.8% in 

the period 2010-2016. Little is known about the impacts of these hybrid seeds in Vietnam 

while significant funding has been allocated to imported varieties for production as an effort 

to increase food supply for the growing demand, both domestically and internationally. 

This paper addresses the question whether hybrid rice varieties help uplift rice 

productivity in Vietnam. Assessing the superiority of a technology over another is 

complicated due to selection bias resulting from observables and unobservables (Greene, 

2010; Greene, 2008; Heckman & Navarro-Lozano, 2004). Farmers who are productive with 

the new technology are likely to be productive with the old technology because they have 

higher levels of education, better information, or unobserved factors that positively affect 

productivity (Barrett et al., 2004). The failure to address selectivity bias in previous hybrid 

rice assessments (Azad & Rahman, 2017; Mustafi & Hossain, 2008; Hossain et al., 2006; 

Jin et al., 2002; Huang & Rozelle, 1996) might have led to overstatements of return to hybrid 

rice seeds. 

This work builds on the cross-sectional analysis by Villano et al. (2015) who 

evaluated the impacts of certified seeds on productivity and technical efficiency in the 

Philippines’s rice sector. Villano et al. (2015) combined Propensity Score Matching (PSM) 

with a stochastic frontier model with correction for selectivity bias proposed by Greene 
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(2010). Although PSM does not completely eliminate biases stemming from observables, 

Imbens and Wooldridge (2009) argued that this method yields reasonable results. Our work, 

however, differs from Villano et al. (2015) in a number of ways. Our frontier models avoid 

the standard assumption of time-invariant technical efficiency associated with cross-

sectional frontier models and other traditional panel frontier estimates. In addition, although 

the metafrontier model from Villano et al. (2015) allows direct comparisons of technical 

efficiency, the frontier model with correction for selectivity bias does support direct 

comparisons of the base productivity and factor productivity, which in many cases are our 

research interests. Our stochastic frontier model is specified to capture differences in the 

base productivity, factor productivity, and technical efficiency. 

This paper makes threefold contributions to the existing literature on technology 

impact assessment in the rice sector. First, it is the first to examine how adoption of hybrid 

rice varieties affect farm productivity and technical efficiency measures using panel data. 

Our panel estimates on the matched sample from PSM show that the fixed-effects estimators 

can eliminate selection bias resulting from unobservables as long as they are time-invariant. 

Second, our stochastic frontier model proposes a simple way to accommodate direct 

comparisons of the base productivity, factor productivity, and technical efficiency between 

different rice seed technologies. Finally, in contrast to the common findings on positive 

impacts of hybrid rice seeds, this analysis documents a negative impact of hybrid rice seeds 

in Vietnam between 2006-2016. Large technical inefficiency gaps exist among both groups 

of farmers indicating potential benefits from efficiency-enhancing efforts in Vietnam rice 

production. 

The rest of the paper is organized as follows. The next section presents the 

methodological framework, followed by a section describing the empirical models and data. 
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Section 4 discusses the results. Section 5 concludes the paper with some key findings and 

policy implications. 

3.2. Conceptual framework  

3.2.1. The stochastic frontier model for panel data 

 Traditional panel stochastic frontier using the fixed-effects estimators has two main 

shortcomings which may lead to biased estimates. Technical or cost efficiency is assumed 

to be time-invariant. Additionally, fixed-effects estimators force any time-invariant 

heterogeneity into the term that is used to capture the inefficiency (Belotti et al., 2013; 

Greene, 2005). While the first assumption on time-invariant technical efficiency may not be 

relevant for long-run panel data, failing to account for time-invariant heterogeneity in 

stochastic frontier analysis leads to higher estimates of technical inefficiency (Belotti et al., 

2013). 

 Greene (2005) proposed a time-varying stochastic frontier model with unit-specific 

intercepts to rule out time-invariant heterogeneity of inefficiency. The stochastic frontier 

specification for output-oriented model with the dependent variable in natural log form is: 

Yit= ai + xit
' *β + vit - uit      (3.1) 

where Y is output; ai is a vector of unit-specific time-invariant heterogeneity which affects 

production outcome; x is a vector of inputs; β is a vector of unknown parameters to be 

estimated; v is a two-sided random error term; u is a non-negative term representing technical 

inefficiency; i denotes observation while t represents the time at which the observation is 

observed. This model allows the disentanglement of time-varying inefficiency from unit-

specific time-invariant unobserved heterogeneity. Standard assumptions on the stochastic 

error terms are that E(vi) = 0 for all i, E(vi vj) = 0 for all i ≠ j, E(vi
2) = σv

2, E(ui) > 0, E(uiuj) 

= 0 for all i ≠ j, and E(ui
2) = σu

2. These assumptions are restrictive and can be relaxed by 

allowing the variances of the error terms to be a function of other variable(s). 
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 Under the further assumption that uit is half-normally distributed and there is no auto-

correlation between uit and uis, the density function for Ɛit = vit – uit is: 

f(εit)= (
2

σit
) ∅ (

εit

σit
) (1-Φ (

λitεit

σit
))  for -∞ < Ɛit < +∞  (3.2) 

where 𝜎𝑖𝑡
2 = 𝜎𝑣𝑖𝑡

2 + 𝜎𝑢𝑖𝑡
2 , λit = σuit/σvit, 𝜙 is the standard normal density, and Ф is the standard 

normal cumulative distribution function. 

 The output-oriented measure of individual technical efficiency in the time t is the 

ratio of observed output to the corresponding maximum output (when uit = 0) (Battese & 

Coelli, 1995): 

TEit=
E(Yit/uit,Xit)

E(Yit/uit=0,Xit)
= e-uit=1/euit     (3.3) 

And, the overall technical efficiency score of all observations in all periods is: 

TE=1 - E(u)        (3.4) 

To assess farm-level technical efficiency, we need to calculate the value of uit. After 

the frontier has been fitted to the data, we can obtain an estimate of Ɛit = vit – uit. This value 

is then used to disentangle the inefficiency component uit by applying the conditional mean 

function E(uit|Ɛit)  as presented in Jondrow et al. (1982): 

 E(uit|εit)=
σitλit

1+λit
2  [

ϕ(
εitλit

σit
)

1-Φ(
εitλit

σit
)

-
εitλit

σit
]     (3.5) 

 Greene (2005) termed these stochastic frontier models “True” Fixed Effects (TFE) 

or “True” Random Effects (TRE) according to the assumptions on the unobserved unit-

heterogeneity. If the unit-specific heterogeneity, which affects production outcomes, is 

uncorrelated with the production process (or with other exogenous variables included in the 

model), a TRE model will reveal interesting facts about cross-unit heterogeneity impact. 

However, cross-farm heterogeneity in terms of management skills can affect the choice of 
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rice seeds, amounts of inputs used, and productivity. Therefore, we apply a TFE model to 

obtain robust estimates of parameters. 

3.2.2. Self – selection into new rice seed production 

 On-farm experiments have reported a productivity gain of 15-20% from hybrid rice 

seeds (Food and Agriculture Organization, 2014). However, the production with hybrid rice 

varieties involves higher levels of input use and a larger scale of farming for the productivity 

gains to be materialized. This can result in different frontiers for adopters and non-adopters 

of hybrid rice varieties. We are interested in measuring the productivity differences between 

hybrid and improved rice seeds by allowing the vector β in Equation (3.1) to differ by 

including a hybrid rice seed indicator (d) and its interactions with other inputs xi. However, 

estimated coefficients in Equation (3.1) are subject to biases due to selectivity bias if farmers 

select themselves as adopters of hybrid rice. The choice of crop varieties can be associated 

with a broad range of factors (w) which can be modeled as follows: 

P(di=1)=∂i*𝑤𝑖+ωi        (3.6) 

where 𝜕i is a vector of parameters and ωi is a random error. If any of the determinants of 

variety choice also affect productivity but are not explicitly included in Equation (3.1), the 

new seed indicator in Equation (3.1) is correlated with the error term of the frontier function. 

In this case, estimated parameters of Equation (3.1) are biased. 

 We address selection bias in Equation (3.1) using PSM in a panel setting. This 

approach involves three steps as follows: 

 In the first step, a pooled probit model is estimated to generate the probability, or the 

propensity score, of being hybrid rice seed for each household using Equation (3.6).  

 In the second step, each household with hybrid rice production is matched to a 

household with other inbred varieties. There are several matching algorithms (Caliendo & 

Kopeinig, 2008). The nearest-neighbor matching method identifies for each household in the 
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treated group the closest twin in the opposite technological status. The caliper matching 

imposes a tolerance level (also known as common support condition) on the maximum 

propensity score distance when the closest neighbor is far away. The kernel-based matching 

technique identifies the neighbor as the weighted average of households within a certain 

propensity score distance, with weights inversely proportional to the distance. 

 The third step involves the estimation of the panel frontier production function 

described in Equation (3.1) on the matched sample generated from PSM. PSM can control 

for observed heterogeneity associated with both the propensity towards adoption of hybrid 

rice seeds and productivity. However, there may exist other unobserved factors which are 

also correlated with the seed indicators and the error term in Equation (3.1). These include 

time-invariant heterogeneity in farmer’s skills, and other time-varying unobserved factors 

such as changes in public extension services. The fixed-effects estimators from Equation 

(3.1) are expected to be free from time-invariant sources of heterogeneity which are 

potentially associated with adoption status and productivity. Selection on unobserved time-

varying factors is not a major concern if these factors are common shocks on adopters and 

non-adopters of hybrid rice varieties. 

3.3. Empirical models and data 

 Following Mayen et al. (2010), we adopt a stochastic frontier model which allows 

for direct comparisons of the base productivity and factor productivity between hybrid and 

inbred rice varieties. First we estimate a translog functional form of Equation (3.1) using 

panel data. Then we test for adequacy of a Cobb-Douglas functional form to represent our 

data which means the estimates for second orders of input variables jointly equal zero. The 

likelihood ratio test has a Chi-square value of 2.9 and is not statistically significant at the 

conventional level. Therefore, a Cobb-Douglas functional form for our panel data is justified. 

Our empirical Cobb-Douglas frontier model for panel data can be written as: 
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ln(Yit)=ai+ ∑ βk*ln(xit
k )K

k=1 + α*dit+ ∑ γk*dit*ln(xit
k)K

k=1 +τ*t+εit (3.7) 

where Yit is the rice output of household i  at time t. xit is a vector of production inputs, 

including seed, total labor days on rice production, nitrogen fertilizer application, plant 

protection cost, capital cost, rice area, and irrigation coverage. dit is the seed indicator 

capturing the effect of hybrid rice seeds on the base productivity. We also allow hybrid seeds 

to have effects on factor productivity by including in Equation (3.7) a set of interactions 

between seed indicator and other inputs. t is a time-trend variable used to capture neutral 

technology change rather than new seeds, fertilizers, and tractors. βk, 𝜑𝑗𝑘, α, γk, τ are vectors 

of parameters to be estimated.  

 We estimate the following probit seed selection equation to obtain the propensity 

score for matching: 

P(dit=1)=𝜕0+∂1*H it+𝜕2*F it+𝜕3*Socio it+𝜔it    (3.8) 

where H is a vector of household characteristics, F is a set of farmland characteristics, Socio 

is a set of socio-economic factors. The selection of variables explaining adoption is drawn 

from the adoption literature (Pannell & Zilberman, 2020; Norton & Alwang, 2020; Montes 

de Oca Munguia & Llewellyn, 2020; Llewellyn & Brown, 2020; Chavas & Nauges, 2020; 

Doss, 2006; Sunding & Zilberman, 2001; Feder & Umali, 1993; Feder et al., 1985). 

The analysis uses the data from the Vietnam Access to Resources Household Surveys 

(VARHS) 2006 – 2016. The nationally representative surveys have been conducted once 

every two years to collect information on aspects of income-generating activities including, 

but not limited to, agricultural production across regions in Vietnam. The VARHS 2006 

collected information on 2,324 households randomly selected across the seven agro-

ecological regions in the country. Most of these households were then re-surveyed in 

subsequent rounds while the sample sizes have been adjusted to population growth. After 

dropping out observations with missing values for variables of interest, the Data Record 
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Linkage method generates a balanced panel of 325 households with complete information, 

or a total of 1,950 year-household observations. There are 1,322 year-households reported 

the use of hybrid rice varieties. 

Table 3.1 presents a brief definition of variables used in Equation (3.7), and PSM - 

Equation (3.8). Because data on seed and fertilizer application were measured in value, we 

deflated these input expenditures using a producer price index before converting them into 

quantity measures using 2010 prices. For seed use, a price of 40 and 90 thousand VND were 

used for inbred and hybrid seeds, respectively. The most popular fertilizer used in rice 

production is 46% Nitrogen. We converted household fertilizer expenses into actual nitrogen 

application at a ratio of 1: 2.17 and  a price of 5.52 thousand VND per kilo. Table 3.2 presents 

the main statistics and statistical significance of tests on equality of means for variables 

between the two groups of farmers. The unmatched sample shows significant differences 

between adopters and non-adopters in a broad range of factors. Households with hybrid 

seeds have higher levels of general education but with lower total income. The scale of rice 

farming is different between adopters and non-adopters of hybrid rice seeds. While an 

average adopter farms a rice area of more than 8,000 square meters, a non-adopter farms an 

area double that size. Accordingly, the average rice output of an adopter is half of a non-

adopter (more than 4,500 kg versus 9,100 kg). However, the amount of inputs used does not 

vary proportionally to rice area indicating a potentially factor-biased technology, or excess 

input use by hybrid rice farmers. The amount of workdays do not vary substantially across 

the two groups with different average rice farming scales. Fertilizer application of an adopter 

is about 92kg, nearly two-thirds of a non-adopter whose rice cultivated area doubles. 

Although irrigation conditions are not significantly different between adopters and non-

adopters (81.4% versus 85.2%), differences in irrigation conditions across households 

account for the large range of variations within each group (33% and 31.5%, respectively). 
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There are also significant differences in socio-economic factors between adopters 

and non-adopters of hybrid rice seeds. Non-adopters have less access to suppliers of hybrid 

rice seeds as the average distance is further than for adopters. This difference may lead to 

higher interaction costs and weaker information about the hybrid seeds. It is also interesting 

to note that non-adopters tend to be more market-oriented as the proportion of marketed rice 

is higher for non-adopters.  

Once we have estimated Equation (3.8), the propensity score was generated for the 

matching. We consider the single-nearest neighbor matching as this matching algorithm is 

expected to produce the smallest bias (Caliendo & Kopeinig, 2008). Each adopter of hybrid 

seeds was matched to a non-adopter with the nearest propensity score. Because the number 

of adopters is larger than for non-adopters (1,312 versus 638), we allow matching with 

replacement. In this case, one non-adopter can be used more than once as a match. By doing 

so, we can avoid bad matches associated with matching without replacement when adopters 

with high propensity are matched to non-adopters with low propensity.  

 

Figure 3.1. Propensity toward hybrid riceseed adoption 

The matching procedure generates a total of 638 pairs of households with different 

adoption status. We also conducted t-tests on the matched sample to test for the balance of 

the sub-sample generated from PSM. Table 3.2 shows that most of the differences between 

Figure 1.a     Figure 1.b 
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adopters and non-adopters are eliminated after PSM. Figure 3.1.a depicts the differences in 

the propensity towards hybrid rice seed selection before PSM between the two groups. These 

differences contracted after PSM. Figure 3.1.b shows the similarity in the propensity score 

of the two groups in the matched sample. There are 35 households that appear once in the 

panel after PSM. Therefore, the estimation of Equation (3.7) was performed on 1,241 year-

observations. The distribution of variables does not vary significantly after a small reduction 

in sample size. The section to follow discusses the results of the factors associated with the 

adoption of hybrid rice seeds and the frontier production estimates. 

3.4. Estimation results 

3.4.1. Propensity Score Matching analysis 

 The starting point of this analysis was potential selectivity bias in our productivity 

impact assessment. First we checked whether selection on observables is a source of bias in 

Equation (3.7). The probit estimates for rice seed selection using Equation (3.8) are reported 

in Table 3.3. The McFadden Pseudo R-squared is estimated at 0.108. Seventy-two percent 

of the sample is predicted accurately. The Chi-square test statistic is 266.23 and statistically 

significant at 1% level indicating the joint significance of the sample selection variables. In 

general, the probit estimates confirm the significance of the differences in variables between 

the two unmatched groups of farmers illustrated in Table 3.2. 

The literature on agricultural technology adoption (Rajendran et al., 2016; Pannell et 

al., 2006), and in the rice sector (Mariano et al., 2012) emphasizes the importance of 

household and farmland characteristics in predicting adoption. Our probit seed selection 

model confirms the statistical significance of education in explaining adoption behaviour. 

Farmers with higher formal education are shown to have higher propensity towards hybrid 

rice. Experienced farmers tend to choose hybrid rice varieties although the estimated 

coefficient for age is not statistically different from zero. It is interesting to note that market-
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oriented farmers tend to eschew adoption as the estimated coefficient for market-

participation is negative and statistically significant (-0.73). While the output prices are 

roughly 4% lower for new rice varieties, the less marketability of new rice varieties due to 

perceived lower quality in terms of broken rate and fragrance (Food and Agriculture 

Organization, 2014; Hossain et al., 2003; Janaiah et al., 2002) induces market-oriented rice 

farmers to maintain production with inbred varieties. 

Table 3.3. Selection Equation 

Variables Coefficient Std.error 

hh_size -0.04 0.02 

head_sex 0.11 0.10 

head_edu 0.03*** 0.01 

head_age 0.01 0.00 

D_income_new -0.00 0.00 

market_participation -0.73*** 0.12 

no_plots 0.06*** 0.01 

farm_size -0.00 0.00 

tenure 0.06 0.08 

irrigation -0.01 0.11 

distance_input_supplier -0.01*** 0.00 

extension_contact 0.01 0.02 

credit -0.06 0.07 

disaster -0.02 0.02 

agricultural_wage -0.01*** 0.00 

Constant 0.62** 0.27 

Observations 1,950  
 *** p<0.01, ** p<0.05, * p<0.1 
(reported standard errors are clustered at household level to account for potential correlation in 

household decisions over time) 

 

This analysis shows no size-biases in the adoption of hybrid rice seeds as they are a 

lumpy technology that is easy to adopt on a small scale with minimal start-up cost and no 

fixed investment. This finding echoes the work by Alauddin and Tisdell (1986) which finds 

no real impacts of farm size and tenure on the adoption of modern rice varieties in 

Bangladesh. However, land fragmentation is associated with a higher propensity towards 

new rice seeds as the number of farmland plots is positively associated with adoption. This 

finding is also compatible with the data description that shows the statistical difference in 

this variable between the two groups of farmers in Table 3.2.  
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Differences in local conditions are found to have effects on rice seed selection. The 

likelihood of hybrid rice variety adoption decreases in response to the travel distance to input 

suppliers due to increased transaction costs and weaker information flows. Although credit 

availability, extension services, and farmers’ experience with past weather fluctuations do 

not show statistical significance, increases in agricultural wages are associated with lower 

probabilities that hybrid seeds are chosen. As illustrated in Table 3.2, the production with 

hybrid rice varieties requires more labor which is associated with high opportunity cost for 

family members. The sub-section to follow presents the frontier production functions using 

Equation (3.7) using the TFE estimators. 

3.4.2. Frontier production function estimates  

The estimation of the frontier on the matched sample is expected to mitigate potential 

biases due to self-selection on observables. To demonstrate how the fixed-effects estimators 

help eliminate selection on unobservables in the matched panel we estimated different 

frontier models with correction for selectivity bias suggested by Wooldridge (2015). First, 

we treated the data as if they were cross sections and estimate the Cobb-Douglas frontier 

function. Next, we estimated the Cobb-Douglas frontier model using TFE estimators. Then 

we conducted a Durbin-Wu-Hausman test on the endogeneity of the seed indicator in the 

frontiers. For the cross-sectional model the resulting Chi-squared statistic is 3.97 and 

statistically significant indicating that selection on unobserbable is a real concern. Farmers 

who select themselves as adopters of hybrid rice seeds may have better management skills. 

Changes in public extension services towards rice production may affect both adoption 

behaviours and productivity. In the latter model where panel methods was applied, the 

resulting Chi-squared statistic is 1.84 (p-value =  0.1750). Therefore, our TFE estimators are 

free from selection on farmers’ ability as it is time-invariant. In addition, changes in 
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extension services are no more a source of bias because they are uniform across adopters 

and non-adopters of hybrid rice. 

Table 3.4 presents the estimates of three different frontiers under different 

assumptions on selectivity and rice seed technology. 

Model (1) was estimated on the unmatched sample using the TFE estimators. 

Because the TFE estimators are shown to be free from selection on unobservables, this model 

ignore selection on unobservables. 

Model (2) on the matched sample allows for self-selection on both observables and 

unobservables using the TFE estimators, and allows rice seed technologies to differ between 

adopters and non-adopters. This is the model of our interest. 

Model (3) on the matched sample allows for self-selection on both observables and 

unobservables. However, this model assumes homogenous rice seed technology between 

adopters and non-adopters. 

Although the TFE estimators from Model (1) are expected to be free from selection 

on time-invariant unobservables such as farmers’ ability, the Durbin-Wu-Hausman test 

failed to reject the null hypothesis of exogeneity of the seed indicator due to selection on 

observables. Comparing Models (1) and (2) gives a sense of selectivity bias. Although the 

sign of most coefficients remains consistent between the two models, the larger magnitude 

of most input variables in Model (1) indicating overstatements of factor productivity when 

selection on observables is not taken into account. Our PSM analysis shows self-selection of 

educated farmers into new rice varieties. The estimated coefficient for labor is higher in 

Model (1) as a result of self-selection on education. Model (1) reports no significant 

differences in the productivity base between hybrid and inbred rice seeds. When selection 

on observables has been taken into account, hybrid rice seeds are shown to provide lower 

productivity potential compared with the current improved inbred rice seeds. 
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The LR test for joint insignificance of the intercept shifter and interactions in Model 

(2) has a Chi-squared value of 11.53 and different from zero implying different rice seed 

technologies. Apart from higher requirements for fertilizer application, the production with 

hybrid rice seeds involves higher demand for labor and large rice farming scale. The failure 

to capture these differences in Model (3) leads to overstatements of returns to labor and rice 

farming scale. 

We find that inputs affect rice. For households with inbred rice varieties, output 

elasticities to traditional inputs such as labor, fertilizers, capital cost, and rice area are 

positive and statistically significant. A 1% increase in labor use helps to increase rice 

productivity by 0.17%. The estimate for rice area has a large value of 0.2 indicating potential 

benefit of large scale rice farming. This result also confirms the findings of Pham et al. 

(2007), Kompas et al. (2012), and Diep (2013), about the positive effect of scale in Vietnam 

rice production. 

Hossain et al. (2003) and Ut and Kajisa (2006) estimated approximately a 20% 

increase in Vietnam rice productivity due to the use of hybrid rice seeds. However, our 

results reveal the contrary finding. The intercept shifter is negative (-0.19) and statistically 

significant at indicating a lower productivity base of hybrid rice seeds over the current 

improved inbred rice varieties. The unconditional comparison of productivity and the failure 

to account for selectivity bias in their analyses would have resulted in overstatements of 

return to rice seed technology in Vietnam. Once selectivity bias has been controlled for, 

hybrid rice varieties do not improve the base productivity, compared to inbred varieties. Our 

finding for Vietnam is similar with the finding from Lu et al. (2020) for China. Nevertheless, 

output elasticities to traditional inputs such as amounts of seeds and labor are higher for 

hybrid rice seeds as the interactions between the seed indicator and those variables are 

positive and significant. Hybrid rice varieties require high rate of fertilizer application. 
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However, the estimated coefficient for the interaction term between hybrid seed and fertilizer 

in Model (2) is negative indicating lower factor productivity for fertilizers in hybrid rice 

production. This finding is also consistent with Lu et al. (2020) who found higher fertilizer 

absorption rate and partial productivity of inbred rice varieties over hybrid counterparts at a 

range of fertilizer application rates. The estimated coefficient for the interaction term 

between hybrid seed indicator and rice area has a large value of 0.29 indicating a potential 

benefit of large scale production with hybrid rice. 

We also find evidence of an inward shift in rice technology in the period 2006-2016. 

The estimated coefficient of the time trend variable, t, is negative and statistically significant 

(-0.03). This is consistent with direct seeding in place of traditional transplanting in the 

Southern Central and the Northern Central which results in lower productivity although it 

helps to make farming less labor-intensive. The use of a time trend variable can be restrictive 

in the sense that it does not allow for year-specific variations in rice technology. We re-

estimated the TFE model using time-fixed effects instead of a time trend variable. The 

estimated coefficients for all time fixed-effects are negative and statistically significant for 

all of the years. We failed to reject the null hypotheses that all time-fixed effects coefficients 

are equal. Therefore, the use of a time trend variable in our frontier model was justified.  

3.4.3. Technical efficiency of rice farming 

Finally, to assess managerial gaps in rice production, we measure technical efficiency 

levels (TE) of households against their corresponding frontiers. Table 3.5 compares 

estimates of technical efficiency levels from the three frontier models reported in Table 3.4. 

The estimated technical efficiency is slightly lower for both groups of farmers when self-

selection on observables is not taken into account in Model (1). The average technical 

efficiency is 69.5% and is higher than an estimate of 60.6% from Diep (2013) who failed to 

account for neutral technology backward and selectivity bias in his analysis. 
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Table 3.5. Estimated technical efficiency score (%) 

Model Assumptions Statistics Adopters 

Non-

adopters 

Difference 

in means Total 
       

(1) No selectivity bias 
Mean 69.9 68.8 1.1 69.5 

Std.Dev 21.1 21.2  21.1 

(2) 
Selectivity bias, heteogeneous 

rice seed technologies 

Mean 72.8 71.0 1.8* 71.9 

Std.Dev 21.8 21.8  21.8 

(3) 
Selectivity bias, homogenous 

rice seed technology 

Mean 69.9 73.9 -4.0*** 71.9 

Std.Dev 17.6 15.4  16.6 

<0.01, ** p<0.05, * p<0.1 ( t test for differences between adopters and non-adopters) 

 

Assuming homogeneous rice seed technology does not result in biased estimates of 

technical efficiency for the whole sample. The mean technical efficiency level for both 

groups of farmers is evaluated at 71.9% in Model (3) and is lower than the estimate of 81.6% 

from Khai and Yabe (2011) who failed to control for selectivity bias and lumped all the 

farmers in their stochastic frontier model into one group regardless of potential differences 

between rice technologies. However, ignoring differences in rice seed technologies results 

in a large technical efficiency gap of 4% in favor of non-adopters. Our TFE estimates have 

shown that hybrid rice seeds provide lower productivity. The failure to capture this 

technology inferiority underestimates managerial skills of hybrid rice farmers. 

When measured against corresponding frontiers, the mean TE, corrected for 

selectivity bias, is estimated at 71.9%. There exist large variations in technical efficiency 

within each group as the standard deviations are evaluated at 21.8%. Hybrid rice farmers are 

1.8 percentage point technically efficient than farmers with inbred rice varieties. This finding 

is similar to the findings from Villano et al. (2015) for the Philippines rice sector, and 

Abiodun Elijah et al. (2017) for Nigerian rice farming who found that adopters of new rice 

seeds are more technically efficient. An average efficiency score of 71.9% indicates a 

potential productivity gain of 39% ([100-71.9] / 71.9) from improvements in managerial 

skills for the Vietnam rice sector. 
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3.5. Conclusion 

 Stochastic frontier models estimated with panel data were employed to evaluate the 

impacts of hybrid rice seed technology and managerial capacity on rice productivity in 

Vietnam. We controlled for selectivity bias, resulting from either observables or 

unobservables, by combining PSM with fixed-effects estimators. While PSM mitigates 

selection on observables, the true fixed-effects estimators were shown to be free from 

unobserved heterogeneity. We adopted a stochastic frontier model that allows for direct 

comparisons of the base productivity and factor productivity between rice seed technologies. 

Model diagnostics confirmed that the production frontiers are different between hybrid and 

the current inbred rice varieties. The failure to account for technology differences leads to 

overstatements of returns to labor and rice farming scale, and lower technical efficiency for 

adopters of hybrid rice seeds. 

Although previous impact assessments have shown potential yield gains from hybrid 

rice seeds, this analysis showed that hybrid varieties did not improve Vietnam rice 

productivity between 2006-2016. These seeds have been mostly imported from China and 

tested before commercial production. The lower base productivity of hybrid seeds may 

reflect either a drawback of the government’s seed testing system or the lack of adaptability 

of the imported hybrid seeds to the farming conditions across regions, or both. The results 

also suggest an inward neutral technology shift due to the replacement of traditional 

transplanting. Although technical efficiency measure is higher for adopters of hybrid rice 

varieties due to higher managerial capacity, the average technical efficiency of Vietnam rice 

farming is still low and with large variations. An estimate of technical efficiency score of 

71.9% suggests a 39% yield gap yet to be materialized. Therefore, improvements in 

extension services can be important to uplift Vietnam rice productivity. 
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Although our TFE estimates are expected to be free from heterogeneity, a limitation 

is identified. Using the household survey data, we could not distinguish between a full 

adopter and a partial adopter who adopted hybrid rice seeds on a fraction of their farming 

land. Instead, we defined a household who reported the use of hybrid rice seeds as an adopter. 

Our estimates are, therefore, still prone to potential biases in an unknown direction if partial 

adopters were included in the sample. Each farmer may have different plots with different 

cultivars. Future research could use plot-level data for better causal inferences because it is 

easier for the farmer to report plot-specific rice seeds. In addition, using plot-level panel data 

also helps control for unobserved heterogeneity in farming land characteristics which can be 

a source of biased estimates. 
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Chapter 4. Measuring the impact of climate change on agriculture in Vietnam: 

A panel Ricardian analysis 

 

Abstract:  This paper investigates the economic impacts of changes in climate conditions on 

Vietnamese agriculture. We apply the two-step Hsiao method to a ten-year panel of household 

data which focuses on the production of 20 crops across seven regions in Vietnam. This study 

allows for variable market feedbacks across regions that grow different selections of crops. In 

this way, our paper differs from most panel Ricardian analyses which assume uniform market 

shocks on households. Our analysis also includes climate interactions to allow the effects of 

temperatures to be dependent on the levels of rainfall. Panel evidence from the Ricardian 

model suggests heterogeneous climate impacts across seasons and regions. Rising seasonal 

temperatures are associated with production losses to most regions, with spring temperatures 

being the exception. Increases in summer precipitation are valuable to mitigate the negative 

effects of rising temperatures. Changes in climate normals should not be the focus of policy 

makers since the simulation indicates marginal losses to agricultural productivity, both in the 

short term and the long term. Regions with cool climates are likely to be most affected by the 

projected climate change. 

Keywords: Climate change, climate interactions, two-step Hsiao method, Ricardian model, Vietnam 

 

4.1. Introduction 

Vietnam represents an interesting case for assessing the impact of climate change. 

The country is characterized by highly heterogeneous climate conditions, and researchers 

expect Vietnam to be among the countries hit hardest by climate change (Dasgupta et al., 

2009). The long narrow shape of the country and its diverse typological conditions has 

resulted in seven climate regions where different selections of crops are grown. A report by 

the Ministry of Natural Resources and Environment (MONRE, 2009) indicates changes in 

climate patterns are not uniform. The report predicts that temperatures across the country 
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will increase faster in autumn and winter. The northern region of the country will experience 

a shortage of rainfall in spring, and the southern region will suffer from lower precipitation 

during winter and spring. Researchers believe the likely consequences of changing climate 

conditions are serious and threaten hunger eradication, poverty reduction, and sustainable 

development (Trinh, 2018; Dasgupta et al., 2009). Therefore, assessing the impact of climate 

change in Vietnam is important for adaptation policy. 

Although the literature on climate impact is vast, little is known about how Vietnam 

agriculture will be affected. The simulation by Trinh (2018) presents significant losses due 

to non-marginal changes in long-term climate normals. Unfortunately, the estimated impacts 

of climate on Vietnam agriculture are prone to several sources of bias, which could limit the 

insights. First, although the model allows market shocks to have effects on agriculture, Trinh 

hypothesized price effects to be homogeneous across regions. Given the high heterogeneity 

in crop choice across regions, not allowing for heterogeneous price feedbacks across regions 

leads to biased estimates. Second, the assumption of additive separability of temperature and 

precipitation effects is misleading (Fezzi & Bateman, 2015), such that the estimated 

temperature effects also include the confounding effects of rainfall. 

This Ricardian analysis for Vietnam uses a ten-year panel of household data on 

production of 20 crops across seven regions. We extract climatic and geographic data with 

high resolution to match the location of households. We test for stability of climate effects 

to justify the use of time-mean residuals in a two-step Hsiao method developed by Massetti 

and Mendelsohn (2011). In contrast to previous analysis assuming uniform market shocks, 

our analysis allows variable market feedbacks on regions with different selections of crops. 

In line with plant physiology (Morison, 1996; Monteith, 1977), our Ricardian analysis allows 

the relationship between temperature and precipitation to be mutually dependent. 
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Our findings show that while assuming uniform effects of exogenous market 

feedbacks produces marginal biases, the consequences of omitting climate interactions are 

severe when estimating climate impacts. Vietnam agriculture is shown to be more sensitive 

to changes in temperature than precipitation. Rising seasonal temperatures are associated 

with losses in most regions. Rising precipitation is beneficial in hot summers. Our simulation 

of climate impacts indicates marginal losses to agricultural productivity, with net losses 

ranging from 0.02% to 2.6% between 2030 and 2100. Regions with current cool climates, 

such as the Central Highlands and the Northwest, are expected to be affected the most. 

4.2. Literature review 

 Agriculture is arguably the sector most affected by climate change as it is directly 

exposed to climate elements (Rosenzweig et al., 2014). The projected impacts are severe for 

developing countries where agriculture directly supports the livelihood of a large proportion 

of the population and they have limited adaptive capacity. Estimated climate impacts on 

agricultural productivity are, however, subject to uncertainty, even for the same region under 

similar scenarios of global warming. For instance, Schlenker and Roberts (2009) projected 

large decreases in crop yields for U.S crops while Deschênes and Greenstone (2012) 

estimated small losses in agricultural profits. Deschênes and Greenstone (2012) attributed 

this difference in estimated impacts to the difference in the output measured, contending the 

important role of adaptation in mitigating climate impacts. 

There have been two main approaches to assessing climate impacts on agriculture: 

the agroeconomic approach, and the Ricardian (hedonic) climate models. Agroeconomic 

analyses controls for factors associated with crop yields such that researchers can ideally 

isolate the effects of climate on crop growth and yield. Ewert et al. (2014) and Antle and 

Stöckle (2017) presented in-depth reviews of this approach. The main argument regarding 

this approach is that this method does not allow for actual adaptation taken by farmers to be 
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measured in its outcome. The literature on climate change adaptation shows that farmers 

around the world have adopted different adaptation strategies. These include short-term 

climate-smart agriculture practices such as changes in sowing date, input mix, crop rotation, 

crop diversification and improving irrigation efficiency (Shahzad & Abdulai, 2021; Abdulai, 

2018; Mall et al., 2004; Bradshaw et al., 2004). Long-term adaptations can be achieved by 

crop substitution (Rezaei et al., 2015; Seo & Mendelsohn, 2008), or bundling agricultural 

technologies (Fleischer et al., 2011). Therefore, the agroeconomic approach tends to 

overstate negative impacts (Blanc & Reilly, 2017). Mendelsohn et al. (1994) termed this as 

the “dumb farmer scenario”. In addition, the use of projections from this approach is limited 

due to the fact that the controlled variables used in agroeconomic analyses do not represent 

the diverse conditions of agricultural production. 

The Ricardian model uses statistical tools to estimate relationships between climate 

and agricultural productivity. The model was first developed by Mendelsohn et al. (1994) 

based on a basic assumption that in a competitive market, land values reflect net productivity. 

Within this approach, adaptations are embedded in the information collected regarding 

farmers’ behaviour (Adams, 1999), which is the main difference between this approach and 

the agroeconomic models. Assuming a farmer is looking to maximize income from his farm 

given the exogenous variables that are beyond his control, the farmer would choose a 

different crop or different inputs if the exogenous variables change. Looking across an array 

of climate conditions, there would be different crops chosen in each climate and different 

inputs applied (Mendelsohn & Massetti, 2017). Therefore, the profit-maximizing outcomes 

that the Ricardian model estimates incorporate long-term adaptation taken by farmers.  

The Ricardian model has been applied to quantify economic impacts of climate 

change in a large number of countries across continents (see Mendelsohn and Massetti (2017) 

for more details about these analyses). Most of these studies estimate relationships between 
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climate and agricultural productivity using cross-sectional data. The potentially omitted 

variable problem is a well-known issue associated with cross-sectional analyses (Blanc & 

Reilly, 2017; Fezzi & Bateman, 2015). Panel Ricardian models allow the use of location 

fixed-effects and time fixed-effects to account for potential omitted variables associated with 

unobserved time-invariant factors and common shocks, respectively. Another advantage of 

panel Ricardian models is the ability to test for the stability of climate effects over time for 

climate impact simulation. The standard assumption underpinning climate impact simulation 

is that climate is the only variable that changes over time. This is a restrictive assumption 

that assumes no future changes in agricultural technology that affects either agricultural 

productivity or adaptation capacity. Therefore, the estimated negative impacts should be 

regarded as the upper bound of climate impacts. However, this enables researchers to detect 

the likely changes in agricultural income that are attributable to climate change. 

Panel Ricardian analyses, including Trinh (2018), Fezzi and Bateman (2015), 

Massetti and Mendelsohn (2011), Schlenker and Roberts (2009), and Deschenes and 

Greenstone (2007) detect the likely impacts of climate change against the backdrop of 

possible changes in global agricultural markets by the inclusion of time fixed-effects. The 

underlying assumption made by this approach is that the time fixed effects capture the 

common shocks exogenous to climate. The estimated climate impacts are still subject to 

potential biases if time fixed-effects capture any confounding effects of climate through 

climate-induced price change. 

Ignoring interactions between climate phenomena can result in biased estimates of 

climate variables, however few Ricardian analyses address this. Monteith (1977) and 

Morison (1996), among others, have shown the significance of interactions between 

temperature and precipitation on crop growth. Surprisingly, most Ricardian analyses do not 

document such interaction but rather assume the impact of temperature and precipitation to 
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be additively separable. Fezzi and Bateman (2015), Wang et al. (2009), and Schlenker and 

Roberts (2009)  documented significant interactions between climates indicating potential 

bias in Ricardian analyses which assume the additive separability of climate phenomena. 

 We use the Ricardian model to measure the long-term impacts of climate change on 

Vietnam agriculture using a household-level panel over a period of ten years. The panel 

evidence suggests constant climate effects in the period studied justifying the robustness of 

estimated climate impacts to time-varying confounders. In contrast to previous panel 

Ricardian analyses assuming uniform effects on households of external changes, we allow 

these changes to have different effects on households in different regions. This analysis also 

relaxes the assumption on the additive separability of temperature and precipitation to avoid 

confounding effect of rising temperatures. We show in this paper that while the likely biases 

resulted from assuming uniform changes in external conditions are negligible, the 

consequences of assuming the additive separability of climates are severe when estimating 

climate impacts for Vietnam.  

4.3. Research methodology 

4.3.1. The Ricardian approach to valuing economic impact of climate change 

 The basic hypothesis of the climate impact assessment is that climate shifts the 

production function for crops. The intuition of the Ricardian model is as follows: if future 

climate conditions in location A were analogous to the current climate in location B, then the 

future behaviour of farmers in location A would resemble the current behaviour of farmers 

in location B, ceteris paribus. Therefore, information on agricultural production from cross-

sections includes the implicit value of climate change. The Ricardian model assumes the 

farmer is always looking to maximize production income, subject to a set of exogenous 

conditions of his or her farm. This approach estimates the overall value of each driving factor 

by specifying the hedonic, reduced form model: 
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𝑀𝑎𝑥 𝜋 =   𝑃𝑖𝑄𝑖(𝐾𝑖, 𝐸𝑖  ) − 𝑇𝐶𝑖(𝑄𝑖, 𝑊, 𝐸)    (4.1) 

Where л is net crop income which is the difference between revenue (PQ) and cost (TC) per 

unit of farmland. Pi is the market price of crop i, Qi is the production function of crop i, Ki 

is a vector of production inputs other than land, Ei is a vector of exogenous environmental 

factors such as climate and geographic conditions. The relationship between climate and 

production function is expected to be quadratic (Körner, 2006; Criddle et al., 1997) such that 

the Ricardian model includes square terms of climate variables. Because the dependent 

variable is net crop income the Ricardian model takes into account adjustment cost 

pertaining to adaptation in terms of crop switching. 

The Ricardian model defined by Equation (4.1) is a locus of most profitable crops. It 

is estimated across crops and inputs under different climate conditions (Wang et al., 2009). 

Under the assumption of full adaptation given climate, net crop income or land value has 

attained the long-run equilibrium that contains information on the economic impact of 

climate change. 

 For a simpler illustration, we group independent variables into: a vector of time-

varying variables X, a vector of time-invariant control variables Z, and a vector of climate 

variables C which are long-term averages of weather (Romm, 2018) and their square terms. 

When data are available for different years, one can use the repeated cross-sections to 

estimate the following Ricardian model in any year for which data are available: 

𝑉𝑖𝑡 =  𝑋𝑖𝑡𝛽𝑡 + 𝑍𝑖𝛾𝑡 + 𝐶𝑖𝜑𝑡 + 𝑢𝑖𝑡      (4.2) 

 This is equivalent to estimating a pooled Ricardian model with a set of time dummies 

and their interactions with climate variables. In the above equation, the estimated 

coefficients are allowed to vary over time. Climate change is a long-term trend. Different 

estimates of climate impact for different years seem not to be relevant (Massetti & 
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Mendelsohn, 2011). Therefore, the correctly specified Ricardian model using repeated cross-

sections is: 

𝑉𝑖𝑡 =  𝑋𝑖𝑡𝛽 + 𝑍𝑖𝛾 + 𝐶𝑖𝜑 + 𝑢𝑖𝑡      (4.3) 

Because the Ricardian model measures long-run impacts of climate, a single-stage 

fixed-effects method is not appropriate since there is no variation in climate variables. 

Therefore, the Ricardian model for panel data can be estimated in two ways. One is to pool 

the entire data set to estimate a single stage using the above equation. The second way is to 

apply the Hsiao two-step method developed by Massetti and Mendelsohn (2011). 

Researchers prefer the Hsiao method because the fixed-effects estimates of time-varying 

variables are robust to omitted (time-invariant) variables at the household level (Blanc & 

Schlenker, 2017). The details of the Hsiao two-step method are as follows: 

4.3.2. The Two-stage Hsiao method for the panel Ricardian model 

 In the first step, net crop income or land value is regressed on time-varying 

variables using a fixed-effects method: 

𝑉𝑖𝑡 =  𝑋𝑖𝑡𝛽 + 𝜀𝑖𝑡       (4.4) 

where εit is the resulting error term. 

In the second step, the time-mean residuals (simple residuals plus fixed effects) 

obtained from the first step are regressed upon climate and other time-invariant controls: 

𝑉𝑖̅ − 𝑋𝑖̅𝛽̂ = 𝑍𝑖𝛾 + 𝐶𝑖𝜑 + 𝑢𝑖̅      (4.5) 

 While the estimated coefficients for time-varying variables in Equation (4.4) are 

robust to omitted time-invariant factors, the estimated climate impacts using Equation (4.5) 

are still prone to unobserved heterogeneity. Differences across regions in terms of soil 

properties and climate may lead to systematic differences in crop choice and productivity. 

Variations in global agricultural markets can be associated with changes in agricultural 

incomes. Panel Ricardian models can control for those potential omitted variable problems 
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by using two way fixed-effects (Blanc & Reilly, 2017). The estimation of Equation (4.5) can 

include a set of regional dummies to account for unobserved time-invariant heterogeneity 

across regions. To account for potential omitted time-varying factors, one can include in 

their regression a set of time dummies to capture common shocks which can affect 

agricultural income. 

4.3.3. Methodology considerations 

 Using two way fixed-effects can (partly) control for omitted heterogeneity when 

estimating climate impacts. Panel Ricardian estimates are still subject to biases from time-

varying confounders if unobserved time-varying factors are associated with climate. In a 

long-run panel there may exist price adjustments to climate change. In this case the use of 

time fixed-effects are problematic because they are endogenous in the Ricardian model. A 

simple way to test for the stability of climate effects is to introduce to the model interactions 

between time dummies and climate (Massetti & Mendelsohn, 2011). The test for stability of 

climate impacts is simply a test on the joint insignificance of the coefficients associated with 

time-climate interactions. If the null hypothesis is not rejected, confounding effects of 

unobserved time-varying factors are not a major concern. The subsequent Ricardian model 

can be re-estimated without time-climate interactions and the use of time-mean residuals in 

the second step of Hsiao method is relevant. 

 Our Ricardian analysis implicitly models long-term adaptation in terms of crop 

choice such that farmers in different climate conditions grow different selections of crops. 

Agricultural commodities may react differently to market variations. Failing to address 

heterogeneous price change effects is therefore expected to produce biases to climate and/or 

other time-invariant controls in Equation (4.5). A general approach to introduce 

heterogeneous price feedbacks is to include a set of interactions between regional dummies 

and time dummies. If the test for the compound hypothesis that all coefficients associated 
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with interactions between time and regional dummies are equal is not rejected, then the 

Ricardian model can be re-estimated without these interactions. 

4.4. Empirical model and data 

4.4.1. Empirical Ricardian model 

 This analysis uses a ten-year panel of farm-level data which allows us to use two way 

fixed-effects to better control for omitted variable problems. Following Van Passel et al. 

(2017), this analysis uses the log of net crop income as the dependent variable as it has more 

predictive power compared to the linear model. Some of the independent variables are also 

in natural logarithm form. Seasonal temperatures and rainfalls are introduced to the model 

to capture seasonal effects (Van Passel et al., 2017). We relax the assumption of the additive 

separability of climate effects through the inclusion of interactions between temperature and 

precipitation, allowing the effects of temperature and precipitation to be mutually dependent. 

We first justify the use of the two-step Hsiao method by estimating Equation (4.2) 

using the following pooled model: 

𝑙𝑛𝑉𝑖𝑡 =  𝑋𝑖𝑡𝛽 + 𝑍𝑖𝛾 + 𝐶𝑖𝜑 + 𝑢𝑖𝑡      (4.6) 

Equation (4.6) includes a set of interactions between time dummies and climate 

variables. We use the Likelihood Ratio test (LR) to test for stability of climate impacts under 

the null hypothesis that all coefficients associated with time and climate interactions jointly 

equal zero. The LR test has a F-statistic of 1.52 and a p-value of 0.07. We fail to reject the 

null hypothesis that climate impacts are consistent over time at the 5% level. Our climate 

estimates are, therefore, expected to be free from time-varying confounders. The LR test also 

lends itself to the application of the time-mean residuals using the two-step Hsiao method 

described in the methodology section. 

 Next we estimate the first step of the Hsiao method using fixed-effect estimators: 

𝑙𝑛𝑉𝑖𝑡 =  𝑋𝑖𝑡𝛽 + 𝜀𝑖𝑡       (4.7) 
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Then, the time-mean residuals (simple residuals plus fixed effects) obtained from 

Equation (4.7) are regressed upon climate and other time-invariant controls: 

𝑙𝑛𝑉𝑖
̅̅ ̅̅ ̅ − 𝑋𝑖̅𝛽̂ = 𝑍𝑖𝛾 + 𝐶𝑖𝜑 + 𝑢𝑖̅      (4.8) 

with interactions between time dummies and climate variables being excluded. 

 Vietnam’s long narrow shape of the country and the complex typology results in 

seven climate zones. The long-term adaptation taken by farmers in terms of crop choice has 

resulted in different crop selections across regions (Nguyen, 2017). We capture potential 

differentiated price effects through the inclusion of interactions between time and regional 

dummies. Our Ricardian model in the second step of the Hsiao method takes the following 

form: 

𝑙𝑛𝑉𝑖
̅̅ ̅̅ ̅ − 𝑋𝑖̅𝛽̂ =  𝛼 + 𝛿 ∗ 𝐸 + 𝛾 ∗ 𝑅 +  𝜏 ∗ 𝐷 + 𝜇 ∗ 𝑅 ∗ 𝐷 +  𝛾1 ∗ 𝑇 + 𝛾2 ∗

𝑇2 +  𝛾3 ∗ 𝑃 + 𝛾4 ∗ 𝑃2 + 𝛾5 ∗ 𝑇 ∗ 𝑃 +  𝑢𝑖̅      (4.9) 

where E represents elevation, R a vector of regional dummies, D a vector of time dummies, 

R*D a vector of interactions between time and regional dummies used to capture 

heterogeneous price feedbacks across regions, T a vector of four seasonal temperatures, P a 

vector of four seasonal precipitations, T*P a vector of interactions between temperatures and 

precipitations, 𝑢𝑖̅  an error term which is assumed not to be correlated with climate. 

The marginal impact of seasonal temperatures on agricultural income is calculated 

using the following equation: 

𝜕𝑙𝑛𝑉𝑖̅̅ ̅̅ ̅̅

𝜕𝑇
=  𝛾1 + 2 ∗ 𝛾2 ∗ 𝑇 +  𝛾5 ∗ 𝑃     (4.10) 

 In addition, the marginal impact of seasonal precipitations on agricultural income is: 

𝜕𝑙𝑛𝑉𝑖̅̅ ̅̅ ̅̅

𝜕𝑃
=  𝛾3 + 2 ∗ 𝛾4 ∗ 𝑇 +  𝛾5 ∗ 𝑇     (4.11) 

Because the dependent variable is in log form, the estimated marginal effects using 

Equations (4.10) and (4.11) are interpreted as percentage change in agricultural income due 

to one unit change in the corresponding climate variable. The estimation of Equation (4.9) 
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uses area of household farmland as weights for two reasons. First, estimates of climate 

change from households with large crop production are more precise than from households 

with small production. Second, using farm size as weights can correct for heteroscedasticity 

(Deschenes & Greenstone, 2007) which is problematic in econometric modelling. 

4.4.2. Data 

This analysis uses the nationally representative survey data from the Vietnam Access 

to Resources Household Surveys (VARHS). These datasets contain rich information on 

income activities from production of 20 crops across seven regions. The Probabilistic Data 

Record Linkage method applied to these datasets produces a ten-year unbalanced panel of 

2,340 households or 8,356 year-households. Following Wang et al. (2009) and Seo et al. 

(2009), this study uses net crop income per square meter as a proxy for land value in 

Equations (2)-(11). Household’s self-consumed products are evaluated at market prices. To 

ensure the comparability, economic variables are converted to constant 2010 VND.  

The climate data were derived from Worldclim version 2.0 (Fick & Hijmans, 2017) 

and have a high resolution of one square kilometer. Because we use climate data with high 

resolution, the matching between climate and household location results in low probability 

of mismatch. This study uses seasonal averages of temperature and rainfall for the period 

1970-2000 based on the season classification of the Ministry of Natural Resources and 

Environment (MONRE, 2009) to support the identification of heterogeneous climate 

impacts. Climate and agricultural production may vary across altitudes (Mendelsohn et al., 

1994). We extract data on elevation with the same resolution using free spatial data from the 

DIVA-GIS website. 

Rising population may create pressure to use land efficiently (Mendelsohn et al., 

1994). Increases in agricultural wages may be associated with higher opportunity cost for 

family labor and higher hired labor costs. The VARHS surveys on the commune level 
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represent a rich set of data on agricultural wages. The wage data are combined with 

household data by applying the same Probabilistic Data Record Linkage method. Data on 

population density come from Vietnam Government Statistical Office. Table 4.1 presents a 

brief definition of the variables while Table 4.2 provides the regional averages of the data 

used. The data description highlights the heterogeneity of climate and socio-economic 

conditions which are hypothesized to have impacts on agricultural performance across 

regions. 

 Table 4. 1. Variable definition 

Variable   Measurement 

Dependent variable  

income_meter 

(in log form) 

Net crop income per square meter 

= (total output value evaluated at market price - total cost)/farmland 

Thousand VND/square meter (2010 prices) 

Household characteristics  

hh_size Number of household member (person) 

head_sex Gender of household head, binary (1 = male) 

head_edu Formal schooling of household head (year) 

head_age Age of household head (year) 

Farmland characteristics  

no_plots Number of separate farmland plots 

farm_size Farm size (square meter) 

irrigation % of farmland irrigated 

Socio-economic characteristics  

Extension_contact Number of extension contacts in the last two years (times) 

Wage (log) Thousand VND/ workday in agriculture (communal average) 

Population density (log) Thousand persons/square kilometer 

Topographic characteristics  

Elevation Meter 

Climate variables  

Winter_tem Winter monthly temperature (Celsius degree) 

Spring_tem Spring monthly temperature (Celsius degree) 

Summer_tem Summer monthly temperature (Celsius degree) 

Autumn_tem Autumn monthly temperature (Celsius degree) 

Winter_pre Winter monthly precipitation (millimeter) 

Spring_pre Spring monthly precipitation (millimeter) 

Summer_pre Summer monthly precipitation (millimeter) 

Autumn_pre Autumn monthly precipitation (millimeter) 

Regional dummies Red River delta, Northeast, Northwest, Northern Central, Southern 

Central, Central Highlands (Mekong River delta as reference) 

Time dummies 2008, 2010, 2012, 2014, 2016 (2006 as reference) 
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4.5. Estimation results 

4.5.1. Hsiao estimation of step 1 – effects of time-varying factors on agricultural 

productivity 

 We used a fixed-effects method to estimate Equation (4.7). Household production 

can be correlated over time as the households exhibit unobserved time-constant 

characteristics. We take potential serial correlation in household’s agricultural performance 

into account by clustering the errors by household. Table 4.3 presents the estimates for time-

varying variables. Most of the coefficients are statistically significant at 5% indicating the 

relevance of most variables in explaining variations in agricultural income. Increases in 

population are positively associated with land use efficiency due to the pressure of lowering 

per capita farming area.  

Table 4.3. The Hsiao estimates of step 1 

 Coef. Std. Err. 

hh_size 0.054*** 0.010 

head_sex -0.012 0.070 

head_edu 0.010** 0.004 

head_age -0.002 0.002 

no_plots 0.016*** 0.006 

log_farm_size -0.497*** 0.035 

irrigation 0.198*** 0.040 

extension_contact 0.021*** 0.005 

wage 0.000*** 0.000 

log_population 0.141* 0.074 

Observations 7,539 

Number of panel_id 2,340 

*** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at household level. 

 

 Household size and education positively correlate with agricultural performance. 

There exists an inverse relationship between farm size and productivity which is consistent 

with the literature (Helfand & Taylor, 2020; Barrett et al., 2010; Feder, 1985). A one 

percentage point increase in farm size is associated with roughly a 0.5% decrease in income 

per square meter. As expected, increases in irrigation coverage are associated with higher 
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agricultural income. Land fragmentation in contrast, is associated with higher productivity. 

Our finding is contrary to the findings for South Asian countries by Niroula and Thapa 

(2005), and for Vietnam by  Tran and Vu (2019). These analyses attribute the negative 

effects of land fragmentation to the disadvantages associated with higher production costs 

and lower production efficiency. However, land fragmentation is associated with crop 

diversification which is an adaptation strategy to natural and economic shocks in the 

Vietnam context (Nguyen et al., 2017). 

4.5.2. Hsiao estimation of step 2 – impacts of climate and other time-invariant controls 

Previous panel Ricardian models (Trinh, 2018; Fezzi & Bateman, 2015; Massetti & 

Mendelsohn, 2011; Schlenker & Roberts, 2009; Deschenes & Greenstone, 2007) capture 

changes in global agricultural markets as common shocks to all households. However, 

variations in global commodity prices are not uniform (Haile et al., 2016). We allow for 

differentiated market shocks to farmers in regions that grow different selections of crops by 

including a set of interactions between time and regional dummies. The estimation of step 2 

of the Hsiao method also includes a set of interactions between seasonal temperatures and 

precipitations. Most coefficients of these interactions are significant at the conventional level. 

We report in Table 4.4 hypothesis tests to support our arguments before reporting the 

estimates of step 2 using Equation (4.9). 

Table 4.4. Hypothesis testing 

Null 

hypothesis 

Variable on which its 

coefficient(s) is (are) 

tested 

Value to be 

tested 
F test 

value 
p-value Decision 

Homogenous 

market shocks 

across regions 

Interactions between time 

and regional dummies 

Jointly equal 3.45 0.000 Reject 

No climate 

interactions 

Interactions between 

seasonal temperatures 

and precipitations 

Jointly equal 

zero 

9.52 0.000 Reject 

 

The test results indicate heterogeneous price feedbacks across regions as a result of 

inherent differences in farming structures and non-uniform changes in agricultural 
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commodity prices. The inclusion of interactions between regional and time dummies are, 

therefore, expected to improve the precision of regional impacts of climate. In addition, the 

LR test on climate interactions strongly rejects the null hypothesis on the additive 

separability of climate. The inclusion of climate interactions is expected to produce more 

accurate estimates of each climate phenomenon. Table 4.5 contrasts the estimates for climate 

variables across assumptions on effects of price change and climate interactions. 

The estimated coefficients of most climate variables and their square terms are 

statistically significant in the three models indicating nonlinear responses of agriculture to 

climate. Once climate has been controlled for, farms located in higher elevations tend to be 

less productive as the estimated coefficients for elevation is negative (-0.002). The sign and 

statistical significance of variables do not change substantially across the first two models 

under the alternative assumptions on market shocks. However, the assumption of 

homogenous market shocks in Model (2) produces relatively larger estimates for most 

climate variables indicating potential overstatements of climate impacts due to confounding 

effects between external changes and regional farming systems.  

We find the effects of rising temperature are dependent on the levels of rainfall in the 

four seasons. Figure 4.1 illustrates interactions between climate elements. Rising 

temperature in the winter is harmful to agriculture. The negative impact of rising winter 

temperature is even more severe with higher levels of rainfall (Figure 4.1.a). Spring 

temperatures below 24°C are harmful. Further increases in spring temperature are more 

beneficial as long as there is a low level of rainfall for plant pollination (Figure 4.1.b). Rising 

summer temperature is expected to cause losses. The likely negative impacts of a hotter 

summer are mitigated by a high level of rainfall of 350 mm/month (Figure 4.1.c). 

Agricultural income exhibits an inverse U-shape relationship with autumn temperature. A 

high precipitation of 350 mm/month is expected to maintain positive marginal impact of 
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rising autumn temperature (Figure 4.1.d). These findings of beneficial impacts of 

precipitation in seasons with high temperatures are in line with the farm-level findings by 

Fezzi and Bateman (2015) for Great Britain. Ignoring climate interactions severely biases 

our climate impacts. Comparing Models (1) and (3) gives a sense of omitted climate 

interaction. The estimates for seasonal temperatures and precipitations are much smaller in 

magnitude in Model (3) indicating that the estimated climate impacts hide their nature due 

to the inseparability of temperature and precipitation. 

Table 4.5. Hsiao estimates of step 2 

  (1) (2) (3) 

VARIABLES 

Heterogeneous market 

shocks across regions, 

climate interactions 

Homogeneous 

market shocks 

across regions, 

climate interactions 

Heterogeneous 

market shocks 

across regions, no 

climate interactions  

Winter_tem -10.163*** -10.242*** -4.216*** 

Winter_tem square 0.225*** 0.229*** 0.097*** 

Spring_tem 9.901*** 9.615*** 5.083** 

Spring_tem square -0.168*** -0.161*** -0.096** 

Summer_tem -10.134*** -10.932*** -6.854*** 

Summer_tem square 0.194*** 0.209*** 0.127*** 

Autumn_tem 23.510*** 25.201*** 8.918*** 

Autumn_tem square -0.471*** -0.513*** -0.192*** 

Winter_pre -0.261*** -0.228*** -0.032* 

Winter_pre square -0.001*** -0.001*** 0.000 

Spring_pre 0.235*** 0.270*** -0.043* 

Spring_pre square -0.000 -0.000 0.000 

Summer_pre 0.133*** 0.121*** 0.026*** 

Summer_pre square -0.000 -0.000 -0.000** 

Autumn_pre 0.057 0.023 -0.041*** 

Autumn_pre square 0.000*** 0.000*** 0.000*** 

Winter_tem x Winter_pre 0.014*** 0.012***  

Spring_tem x Spring_pre -0.008*** -0.010***  

Summer_tem x Summer_pre -0.004*** -0.004***  

Autumn_tem x Autumn_pre -0.005*** -0.003*  

Elevation -0.002* -0.002 -0.000 

Constant -186.041*** -189.743*** -27.634** 

Time dummies Yes Yes Yes 

Regional dummies Yes Yes Yes 

Time * regional dummies Yes No Yes 

observations 8,356 8,356 8,356 

R-squared 0.100 0.089 0.095 

*** p<0.01, ** p<0.05, * p<0.1    
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Figure 4.1.  Interactions between temperatures and precipitations 

The inclusion of square terms, and interactions between climate variables makes each 

individual coefficient in Table 4.5 no longer represent the true marginal effect of each 

variable. We derive the average marginal effects of seasonal climates using Equations (4.10) 

and (4.11) for Model (1) reported in Table 4.5. Vietnam is characterized by diverse climate 

conditions and topology. We are interested in how the marginal effects vary across regions 

in order to understand how non-marginal changes in climate conditions will likely affect 

agriculture. Table 4.6 summarizes the estimated marginal effects of a one-unit change in 

seasonal temperatures and precipitations across seven regions. We do not sum across seasons 

because it does not make sense to assume uniform changes in climate patterns in the whole 

year.  

 

1. b 1. a 

1. d 1. c 
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Table 4.6. Marginal effects of seasonal climates 

Region 

% change in net income per m2 per ºC 

Winter_tem Spring_tem Summer_tem Autumn_tem 

     
Red River delta -2.005*** 1.059*** -0.194 -0.341 

Northeast -2.206*** 1.219*** -0.496 0.129 

Northwest -2.632*** 1.305*** -1.769*** 2.320*** 

Northern Central -1.379*** 1.058*** 0.160 -0.494 

Southern Central 0.899** 0.702** 0.254 -1.919*** 

Central Highlands -0.251 0.567** -1.631*** 0.904 

Mekong River delta 1.822*** -0.458 -0.105 -3.286*** 

 % change in net income per m2 per mm/month 

 Winter_pre Spring_pre Summer_pre Autumn_pre 

Red River delta -0.045*** -0.008 -0.004 -0.003 

Northeast -0.058*** -0.005 0.000 -0.002 

Northwest -0.067*** -0.006 0.007 -0.013 

Northern Central -0.039** -0.003 0.001 0.009 

Southern Central -0.100*** -0.004 0.004 0.072*** 

Central Highlands 0.010 -0.023*** 0.018*** 0.022*** 

Mekong River delta 0.074** -0.041*** 0.003 0.004 

*** p<0.01, ** p<0.05, * p<0.1 

 

 Table 4.6 also indicates that Vietnam agriculture is less sensitive to precipitation than 

to temperature. Increases in winter precipitation are associated with losses to the whole 

northern region and the Southern Central with net losses ranging from 0.039% to 0.1%. More 

precipitation in spring in contrast, is associated with losses to the Central Highlands and the 

Mekong River delta. Because these two regions are the most important producers of coffee, 

fruit and other perennial crops, rising spring rainfall is harmful to plant pollination. Although 

increases in summer precipitation are beneficial, the estimated impact is significant for the 

Central Highland. In the autumn when precipitation is high (as shown in Table 4.2), further 

increases in rainfall are likely to cause losses to the northern region where annual crops are 

grown. The estimated impacts are positive and statistically significant for the Southern 

Central and the Central Highlands where irrigation coverage is relatively limited. 

Rising winter temperature is likely to cause losses. As depicted in Figure 4.1.a, a 1ºC 

increase in winter temperature is associated with losses ranging from 0.25% to 2.6% for most 
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regions. Figure 4.1.b indicates the optimal spring temperature of 28 ºC. Because the current 

spring temperature in most regions, except the Mekong River delta, is below this optimal 

level, a 1ºC increase in spring temperature is likely to be beneficial for most regions, with 

net surpluses ranging from 0.5% to 1.3%. The Northwest and the Central Highlands with 

cool summer climate are expected to suffer from hotter summers. The optimal autumn 

temperature is 24ºC, as shown in Figure 4.1.d. Because the current autumn temperature is 

above this level, a warmer autumn is likely to be associated with losses to the Southern 

Central and the Mekong River delta, with the Mekong River being the most severely affected. 

4.6. Climate impact simulation 

 In the long-term Vietnam is expected to experience non-marginal changes in climate 

patterns. The expected changes in temperature and rainfall will not be uniform across 

seasons and across regions (MONRE, 2009). Temperature is projected to increase by 0.4°C 

to 3.2°C between 2030 and 2100. Autumn and winter temperatures are projected to increase 

faster than those in spring and summer. The Northern region will experience faster increases 

in seasonal temperatures. Regional and national averages of precipitation are projected to 

increase but with different patterns for seasons. Therefore, it is important to measure how 

these non-marginal changes in climate conditions will affect Vietnam agriculture so as to 

propose adaptation policy. 

Vietnam has issued and implemented several mitigation-related policies and 

programs covering the main sources of greenhouse emission including energy, agriculture, 

land use, land use change and forestry, waste management, and industrial processes. The 

updated version of Vietnam Nationally Determined Contributions (NDCs) submitted in 2020 

stated the goal to reduce total emission by 27% by 2030 compared to the business-as-usual 

scenario. Agriculture is a one of the main sources of emission accounting for 35.8% of total 

national emission (MONRE, 2014). However, the current NDCs indicate little contribution 
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by Vietnam agriculture while the agricultural pathways focus mainly on crop choice, land 

use change, and waste management (UNFCCC, 2020). Therefore, we assume no significant 

changes in future technology will change the productivity of the studied crops. Rather, this 

simulation is an effort to measure how Vietnam agriculture is likely to be affected by the 

projected climate change. 

The conventional approach to simulating climate change effects is using the 

estimated marginal effects and the predicted climate changes (Trinh (2018) , Wang et al. 

(2009),  Seo et al. (2005), Schlenker et al. (2005), Mendelsohn et al. (1994), among others). 

Because the marginal effects depend on the values of independent variables (Wooldridge, 

2012, p. 591), say climate, then these marginal effects do not represent precisely the 

relationships between agricultural income and climate conditions when future climate values 

are not within the observed range of values. In addition, nonlinearity in the production 

function and climate interactions that are not apparent in the historical range of climate data 

may change the relationship between the dependent variable and climates (Blanc & Reilly, 

2017).  

We pay special attention to the prediction of the dependent variable in logarithm 

form. A consistent estimator for predicting values from a regression on the log form of a 

dependent variable takes three steps (Wooldridge, 2012, p. 213): 

First, we run the regression of log values of crop income which are time-mean 

residuals obtained from Equation (4.7) on explanatory variables to obtain the predicted log 

values of the dependent variable and residuals using Equation (4.9). 

Second, the mean of the exponentiated residuals is calculated and used as the 

adjustment factor to scale up the exponentiated predicted log values. 

Third, the original values of crop income are regressed on the exponentiated scaled-

up predicted log values with no constant.  
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We replicate these steps for the prediction of crop income for: (1) the baseline climate 

under the assumption that there will be no future changes in climate conditions to obtain 

predicted values 𝑦̂0 for each household; and (2) for the years 2030, 2050, 2100 under the 

climate change scenarios while other control variables remain unchanged, 𝑦̂1. The predicted 

impacts of climate changes on agricultural productivity are derived by subtracting the 

predicted values 𝑦̂1 from the predicted values 𝑦̂0. Table 4.7 presents the estimated results 

while Figure 2 visualize the predicted changes in net crop income for regions in the period 

2030-2100. 

Table 4.7. Predicted changes in crop income under medium climate change scenario 

Region 

Current 

value 

(VND/m2) 

Predicted 

value 

(VND/m2) 

2030   2050   2100 

% 

change 

Std. 

Dev.       

% 

change 

Std. 

Dev.       

% 

change 

Std. 

Dev.       

Red River delta 3,831 3,510  -0.029 0.608 -0.078 1.509 -0.146 3.395 

Northeast 3,007 3,776  -0.105 0.185 -0.273 0.472 -0.555 0.946 

Northwest 1,955 1,853  -0.498 0.834 -1.316 2.195 -2.672 4.441 

Northern Central 2,449 2,343  -0.036 0.405 -0.102 1.093 -0.227 2.176 

Southern Central 2,610 2,475  -0.021 0.616 -0.052 1.638 -0.108 3.394 

Central Highlands 5,088 4,769  -0.088 0.126 -0.225 0.303 -0.452 0.587 

South 2,970 2,485 -0.100 0.527 -0.274 1.245 -0.632 2.067 

Whole country 3,169 3,081 -0.120 0.581 -0.319 1.497 -0.673 3.093 

(Nation-wide impacts of climate change are averaged across regions using agricultural land as weights) 

 

Previous Ricardian analyses present a mixed picture of climate change impacts 

across continents. European agriculture is more sensitive to climate change than American 

agriculture (Van Passel et al., 2017). While Southern Europe countries are expected to be 

vulnerable to the projected climate change, Northern Europe is expected to benefit (Van 

Passel et al., 2017). Maddison et al. (2007) showed that African countries are likely to suffer 

from future climate change but the estimated impacts vary by country. Ethiopia and South 

Africa are hardly affected with mild losses ranging from 1.3% to 3% by 2050. Our simulation 

for Vietnam indicates that Vietnam is likely not to be affected by future changes in climate 

normals, with average losses ranging from 0.1% to 0.6% between 2030 and 2100. Given the 
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assumption of no future technology change in agriculture, the impacts might end up being 

even smaller if future technology is introduced into agriculture. This finding is contrary to 

the simulation by Trinh (2018) which presents huge losses to Vietnam agriculture. In 

addition to potential errors pertaining to simulation method, the overstated climate impacts 

by Trinh (2018) are attributable to the failure to capture climate interactions and 

heterogeneous seasonal and regional climates.  

Figure 4.2 visualizes the distribution of changes in net agricultural income by region 

between 2030 and 2100. Among the regions, the Central Highlands with current cool climate 

is expected to be the most affected by future climate changes. In the short term, the projected 

climate change in 2030 is likely to cause losses of 0.5 to 1 percentage to income in the region. 

In the long-term when the projected increases in temperature and declines in precipitation 

are likely to result in 2 to 3 percentage losses in income. The Mekong River delta and the 

Northwest are expected to experience marginal losses of 0.5% to 1%. However, the Red 

River delta where irrigation covers more than 90% of the cropping area is hardly affected by 

future changes in climate normals. 

  

Figure 4.2. Percentage change in net income predicted by medium emission scenario 
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4.7. Conclusion 

This panel Ricardian analysis measures the sensitivity of Vietnam agriculture to 

climate change using the Hsiao-two step method on a panel of ten years. We tested for 

potential confounding effects of unobserved time-varying factors in the model. The results 

indicate that our climate estimates are free from unobserved time-varying confounders. Most 

previous panel Ricardian analyses assumed global price changes to be common shocks to all 

households. However, our paper shows that market shocks have variable effects on regions 

growing different selections of crops. While ignoring heterogeneous price feedbacks across 

regions produces biases to climate estimates, the likely consequences of omitting climate 

interaction are even more severe. 

Empirical evidence from this study suggests that farms located at higher altitudes are 

less productive. Rising population puts pressure on the efficiency of land use. The results 

confirm the inverse relationship between landholdings and agricultural productivity, which 

is in line with findings from Barrett et al. (2010) and Tran and Vu (2019). The Ricardian 

results highlight the nonlinear, seasonal role of changing temperature and precipitation. 

Increases in winter, summer, and autumn temperatures are harmful to agriculture, while the 

opposite is true for spring temperature. More rainfall in winter and spring is likely to reduce 

agricultural income, while increases in precipitation in the summer and autumn are predicted 

to benefit agriculture. The simulation indicates marginal regional losses ranging from 0.02% 

to 2.6% between 2030 and 2100. Regions with current cool climate such as the Central 

Highlands and the Northwest are likely to experience above average losses. The Red River 

delta is shown to be minimally affected in the long run. Consequently, the projected changes 

in long-term temperature and precipitation should not be a major concern.  

Although our analysis is an advance on prior research opportunities arise for further 

research to progress understanding. We based the simulation of climate change impact on 
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the hypothesis that Vietnam farming systems remain unchanged in the future. Therefore, our 

estimated impacts of climate change do not capture future technical changes to either crops 

or farming techniques. Further, although we had data on agricultural wages at the commune 

level, we did not use market wage to evaluate labor cost due to the concern over 

differentiated labor costs between households who hire in and those who hire out labor. 

Hence, the estimated net income was not solely a return to land. Finally, consistent with 

most Ricardian analyses, this study implicitly assumes farmers will adapt by crop switching 

in the changing climate. Future research could investigate these issues and how responsive 

the Vietnam agricultural system is to changing climate. Investigating the changing allocation 

of land would facilitate a better understanding of climate impacts and their implications for 

policy. 
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Chapter 5. Farm-level adaptations to climate change in Vietnam: 

Investigating the uptake of crop substitution 

 

Abstract: Vietnam is likely to be among the countries hardest hit by climate change. Given 

the limited capacity for adaptation, crop substitution could be a potential measure to mitigate 

the effects of climate change. This paper examines the uptake of crop substitution as an 

adaptation strategy in Vietnam. The data come from the Vietnam Access to Resources 

Household Surveys, and we model the competition across alternative uses of land using a 

Fractional Multinomial Logit model. Our empirical findings suggest that Vietnamese farmers 

have adapted to the changing climate by selecting different crops, and that this adaptation 

depends on household and farmland characteristics. Increases in winter and summer 

temperatures mean that farmers are more likely to substitute cereal crops for others. Farms in 

wet locations with colder winters and cooler summers are likely to choose cash crops. Farmers 

choose annual industrial crops in locations with warmer springs and autumns. The production 

of permanent crops requires stable temperatures. The projected climate changes are not likely 

to jeopardize the national target of maintaining 40 percent of farmland under rice. However, 

we expect projected climate changes to result in large shifts from cereals to annual industrial 

crops in the two rice bowls of Vietnam. 

 

Keywords: Climate change, crops, Fractional Multinomial Logit, land use share, Vietnam 

 

5.1. Introduction 

Agriculture is sensitive to climate change due to its direct exposure to climate elements. 

The likely consequences of a changing global climate are more severe in developing 

countries where the majority of the population is engaged in small-scale farming and have 

limited ability to adapt (Mendelsohn, 2012; Mendelsohn & Dinar, 1999). As a result, climate 

change is expected to cause losses to the global yield of rice, maize, wheat, and potatoes 
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(Yohannes, 2015). Agricultural industries in Africa, Asia, Europe, and the U.S are also 

sensitive to climate change, even though they have greater ability to adapt (Wang et al., 2009; 

Maddison et al., 2007; Maddison, 2000; Dinar, 1998; Mendelsohn et al., 1994). This raises 

a serious concern among governments over prospects of maintaining food security and the 

likely success of the zero-hunger sustainable development goal set by the United Nations 

(United Nations, 2015). 

The likely negative impacts of climate change on crop production mean countries 

need to investigate adaptation options and understand how likely farmers are to adapt in 

response to changes in climate. Adaptation is defined as responses that reduce vulnerability 

to potential damages from climate change, used by farmers, groups, and governments 

(Bradshaw et al., 2004). Short-term adaptations include changes in sowing dates, 

fertilization, and irrigation (Song et al., 2018; Kurukulasuriya et al., 2011; Guo et al., 2010; 

Pearson et al., 2008; Mall et al., 2004). Long-term adaptations could include crop 

substitution (Rezaei et al., 2015; Chatzopoulos & Lippert, 2015; Wang et al., 2010; Seo & 

Mendelsohn, 2008a; Kurukulasuriya & Mendelsohn, 2007; Bradshaw et al., 2004), farm-

type selection (Seo, 2010; Mendelsohn & Seo, 2007), or bundling agricultural technologies 

(Fleischer et al., 2011). The Ricardian approach shows lower damages from the changing 

climate, while allowing for the actual adaptations farmers make (Thamo et al., 2017; 

Mendelsohn, 2012; Deschênes & Greenstone, 2012; Mendelsohn & Dinar, 1999). 

Although crop substitution is often suggested as a potential adaptation, how likely 

farmers are to substitute crops has received less attention (Mendelsohn, 2012). Previous 

cross-sectional analyses have been limited to crop choice in Africa (Kurukulasuriya & 

Mendelsohn, 2007), Germany (Chatzopoulos & Lippert, 2015), China (Wang et al., 2010), 

and South America (Seo & Mendelsohn, 2008a). The patterns of adaptation vary greatly 

from area to area depending on the extent of the changing climate and other socio-economic 
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environments that farmers face. Mendelsohn (2012) expressed the need for research that 

explores potential adaptation in each scenario of changing climate and socio-economic 

conditions. 

Vietnam is likely to be among the countries hardest hit by future climate change 

(Dasgupta et al., 2009). Previous Ricardian analyses have shown likely negative impacts of 

the projected climate changes on this agrarian economy (Trinh, 2018; Le et al., 2015). Crop 

substitution could be the appropriate adaptation strategy for Vietnam to reduce its 

vulnerability, given that limited capacity exists for bundling agricultural technologies as 

Fleischer et al. (2011) suggested. 

Our study is the first analysis of climate-induced adaptation for Vietnam. As 

suggested by Mendelsohn (2012, p. 10), we consider the long-term effects of climate 

variability on selecting crops by looking at how Vietnamese farmers have adapted to the 

range of climates that exist locally today. Because other dramatic changes are happening in 

agriculture, it is difficult to detect the subtle impact of climate change using cross-sectional 

data (Mendelsohn, 2012). For this reason, we use a ten-year panel of household-level data 

to better control for unobserved heterogeneity when estimating climate impacts and 

predicting outcomes of land use. In contrast to previous models for crop choice that obtain 

cross-household evidence, we use a Fractional Multinomial Logit model to reveal the intra-

household competition across alternatives in land use. Then we use estimated results to 

predict how Vietnamese farmers might change the crops they grow in the future. Our 

research results are important for policy-makers seeking to identify supplementary 

adaptations to the projected changing climate. 

5.2. Research methodology 

Modeling farmland allocation in response to changing climate is not an easy task. 

Land use is the outcome of a decision making process by individual farmers whose 
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behaviour is variable and constrained differently (Chambers & Conway, 1992) depending 

on a broad range of physical and socio-economic contexts. The complexity of factors 

affecting land use choice, and their variability from one setting to another complicates the 

task of predicting land use outcomes and designing land use policy. Previous analyses on 

crop choice in response to changing climate have applied the Multinomial Logit model 

(Chatzopoulos & Lippert, 2015; Wang et al., 2010; Seo & Mendelsohn, 2008a, 2008b; 

Kurukulasuriya & Mendelsohn, 2007). Farm types have been classified into binary choices 

while each individual farmer is assigned only one alternative. Thus, this modeling approach 

reduces to cross-household comparisons and does not facilitate identification of factors 

associated with the intra-household competition across alternatives. 

Land use for different crops can be calculated in terms of proportional shares (sj) 

which fall between zero and one. The sum of sj across crops for each household must sum 

to unity. Given this limited range of values, traditional estimation methods (linear regression, 

the log-odds ratio) are not appropriate (Ramalho et al., 2011). While predicted values from 

a linear regression model may lie outside the range (0;1), the log-odds ratio method resorts 

to an ad-hoc transformation of original data when the actual proportions are extreme values 

(such as 0% or 100% farmland allocated to a particular crop). Papke and Wooldridge (1996) 

and Papke and Wooldridge (2008) developed a Fractional Binomial Logit model to deal with 

fractional variables using the quasi-maximum likelihood estimator (QMLE) without an ad 

hoc transformation of boundary values in the univariate context. 

In a multivariate setting, researchers’ main interest is often estimating the conditional 

means of fractions given a set of explanatory variables. Woodland (1979) proposed the 

Maximum Likelihood estimation of systems of share equations based on the Dirichlet 

distribution. However, one disadvantage associated with the Dirichlet distribution for 

fractional response models is that the predicted values fall outside the unit interval at some 
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particular values of explanatory variables (Murteira & Ramalho, 2016; Mullahy, 2015). The 

Fractional Multinomial Logit model is an extension of the Fractional Binomial Logit model 

which jointly models shares in a multivariate setting while taking into account the bounded 

and fractional nature of shares. The method has been applied in several studies of fractional 

response variables (see Ramalho et al. (2011), Becker (2014), Mullahy (2015), Murteira and 

Ramalho (2016) for a description of alternative specifications, estimation methods, and 

applications). 

Our research investigates how farmers choose to substitute their crops in response to 

climate change. We employ the Fractional Multinomial Logit framework to jointly model 

the competition across land use alternatives. Assume that the ith farmer allocates his farmland 

to the jth crop with a corresponding share of sj (j =1, 2,…, J). The conditional mean for land 

use share for crop j can be expressed in terms of a multinomial logit functional form of linear 

indexes as: 

𝐸(𝑠𝑖𝑗|𝑥𝑖) =  𝐺𝑗(𝑥𝑖𝛽𝑗) =  
exp (𝑥𝑖𝛽𝑗)

∑ 𝑒𝑥𝑝(𝑥𝑖𝛽ℎ)𝐽
𝑗=1

 j = 1, 2…,J  (5.1) 

where xi is a vector of climate and other control variables. Because the relationship between 

climate and agriculture is nonlinear (Fezzi & Bateman, 2015; Mendelsohn et al., 1994), 

vector xi includes square terms of climate variables. 

As with the familiar multinomial logit estimator, some normalization is needed as all 

J of the βj cannot be separately identified in the multinomial quasi-likelihood (Mullahy, 

2015). If we set β1 = 0, then we get: 

𝐸(𝑠𝑖𝑗|𝑥𝑖) =  𝐺𝑗(𝑥𝑖𝛽𝑗) =  
1

1+ ∑ 𝑒𝑥𝑝(𝑥𝑖𝛽ℎ)𝐽
ℎ=2

  j = 1   (5.2) 

And:  

𝐸(𝑠𝑖𝑗|𝑥𝑖) =  𝐺𝑗(𝑥𝑖𝛽𝑗) =  
exp (𝑥𝑖𝛽𝑗)

1+ ∑ 𝑒𝑥𝑝(𝑥𝑖𝛽ℎ)𝐽
ℎ=2

  j = 2, 3…,J  (5.3) 
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One can define the QMLE for the multinomial logit specification by writing the 

likelihood contribution of a single agent: 

ℒ𝑖(𝛽) =  ∏ 𝐸[𝑠𝑖𝑗|𝑥𝑖]
𝑠𝑖𝑗𝐽

𝑗=1       (5.4) 

And the sum of the individual log-likelihoods is maximized to obtain the estimator 

for β: 

𝛽̂ = 𝑎𝑟𝑔 max
𝛽

∑ log ℒ𝑖(𝛽)𝑁
𝑖=1       (5.5) 

It is important to note that βk is no more equal to partial effects as in the linear setting 

because the weighted sum of other β is used to calculate the partial effects, as illustrated by 

writing out the partial effect of the kth regressor on the jth share: 

𝑃𝐸𝑖𝑗𝑘 =
𝜕𝐸[𝑠𝑖𝑗|𝑥𝑖]

𝜕𝑥𝑖𝑘
=  𝐸[𝑠𝑖𝑗|𝑥𝑖] . [𝛽𝑗𝑘 −

∑ 𝛽ℎ𝑘 exp (𝑥𝑖𝛽𝑗)
𝐽
ℎ=2

[1+∑ exp (
𝐽
ℎ=2 𝑥𝑖𝛽ℎ]

]  (5.6) 

However, the average marginal effects (APE) are invariant to the choice of 

normalization and can be interpreted as the percentage point change in the response outcome 

given a one-unit increase in the corresponding explanatory variables. The average marginal 

effect of a continuous independent variable xk on the jth share (sj) is expressed as: 

𝐴𝑃𝐸̂𝑗𝑘 = ∑ (
𝑤𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

) ∗ 𝑃𝐸̂𝑖𝑗𝑘
𝑁
𝑖=1 =  ∑ (

𝑤𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

) ∗ 𝑁
𝑖=1

𝛿𝐸̂[𝑠𝑗|𝑥𝑖]

𝛿𝑥𝑖𝑘
  (5.7) 

where δ is the first derivative, i denotes the observation, wi are nonnegative weights that may 

be used to estimate. When no weights are given, the calculation APE in Equation (5.7) uses 

wi = 1. Due to the adding-up restriction, ∑ 𝐴𝑃𝐸̂𝑗𝑘
𝐽
𝑗=1  = 0. In the case when xk is a dummy 

variable, APEjk is the sample average of the derivative: 

𝜕𝐸[𝑠𝑖𝑗|𝑥𝑖]

𝜕𝑥𝑖𝑘
=  𝐺𝑗[𝑥𝑖𝑚𝛽𝑗𝑚 + 𝛽𝑗𝑘] −  𝐺𝑗[𝑥𝑖𝑚𝛽𝑗𝑚]   (5.8) 

where xm
 denotes other explanatory variables rather than the dummy variable xk at the 

observation i. 
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 Previous cross-sectional adaptation analyses can distinguish the effects of climates 

from other exogenous variables (Blanc & Reilly, 2017) by assuming the unobserved 

heterogeneity is time-invariant and identical across crops. However, this strong assumption 

is unlikely to be relevant for several reasons. Firstly, the constant price assumption 

underpinned by cross-sectional data can be misleading as it does not allow for year-to-year 

market shocks (Mendelsohn & Massetti, 2017; Blanc & Reilly, 2017) to have effects on crop 

choice. Moreover, land use shares for different crops may respond differently to market 

shocks. We allow for time-varying unobserved factors to have non-uniform effects on land 

shares in Equation (5.1) using a set of time dummies. 

Climate-induced adaptation analyses have shown crops respond heterogenously to 

temperatures based on the assumption of the additive separability of temperature (Thamo et 

al., 2017; Chatzopoulos & Lippert, 2015; Kurukulasuriya et al., 2011; Wang et al., 2010; 

Seo & Mendelsohn, 2008a, 2008b; Kurukulasuriya & Mendelsohn, 2007). If we assume that 

economic losses caused by rising temperatures can be mitigated by higher levels of 

precipitation and these interactions vary by crop, then assuming farmers are looking to 

maximize net utility from their farm by choosing crops among the available set of options, 

the failure to capture climate interactions potentially results in biased estimates of climate 

impacts. We relax the assumption of the additive separability of climate effects by 

introducing climate interactions into Equation (5.1). Household’s crop choices can be 

correlated over time as the households exhibit unobserved time-constant characteristics. We 

allow for serial correlation in household’s land allocation by clustering the Fractional 

Multinomial Logit model by household to get precise estimates of standard errors. The 

following section describes the data we used in this analysis. 
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5.3. Data  

 Our primary data come from the Vietnam Access to Resources Household Surveys 

(VARHS) 2006–2016. The nationally representative surveys a once every two years to 

collect information on several aspects of income activities including, but not limited to, 

agricultural production across regions in Vietnam. Details on crop production were collected 

on the plot-level that makes it feasible to calculate land use shares for different crops. The 

combination of these surveys generates an unbalanced ten-year panel of 11,829 year-

households with complete information. The fixed-effects model cannot work well with data 

for which cluster variation is minimal or for slowly changing variables such as different 

selections of crops or farm size (Bell & Jones, 2015; Gormley & Matsa, 2013; Wooldridge, 

2010). Thus we pool the data across years and allow for time-varying shocks to have 

different effects on crops. 

We use data on plot-level production of 19 types of crops to classify typical 

household crop choice in Vietnam. We group crops into five mutually-exclusive categories: 

(1) Cereals, including rice and maize; (2) Cash crops, including potatoes, sweet potatoes, 

cassava, and vegetables; (3) Annual industrial crops, including peanuts, beans, soybeans, 

sugar canes, and other annual industrial crops; (4) Fruit; (5) Permanent industrial crops, 

including coffee, rubber, pepper, cashew, and other permanent industrial crops.  

We classify crop choice based on these crops needing different climatic and farmland 

conditions to grow. The first three groups are short-lived crops which are normally grown 

more than once in an agricultural year. Cereals are temperature-tolerant but drought-

sensitive normally grown on flat parcels. Cash crops are temperature-sensitive and require 

water in all growth periods. Annual industrial crops require less irrigation and can be grown 

on parcels with slopes. The last two groups comprise permanent crops that prefer high 

temperatures. Fruit trees, however, require a high level of humidity while more rainfalls are 
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associated with losses to permanent industrial crops in some particular periods. The rising 

global temperature can shorten the growth cycle of most annual crops (Batts et al., 1997). 

Changing climate is, therefore, expected to have more pronounced impacts on the selection 

of annual crops.  

 

 

Table 5.1. Variable definition 

Variable   Measurement  

Land use shares  

(1) Cereals 

(2) Cash crops  

(3) Annual industrial crops 

(4) Fruit 

(5) Permanent industrial crops 

The proportion of farmland in household’s total farming area 

allocated to the corresponding crop group (%) 

Household characteristics  

hh_size Number of household member (person) 

head_age Age of household head (year) 

head_edu Formal schooling of household head (years) 

head_sex Dummy, =1 if male for household head 

born_in_commune 
Dummy, =1 if either household head or spouse born in the 

commune 

ethnic Dummy, =1 if Ethnicity of the household is Minority 

remittances Remittances from household members (2010 million VND) 

Farmland characteristics  

no_plots Number of separate farmland plots 

farm_size Farm size (1000 square meter) 

irrigation % of farmland irrigated 

tenure % of farm land owned by the household 

Socio-economic characteristics  

extension Number of extension contacts during the last two years (times) 

population Population density (thousand persons/square kilometer) 

credit Dummy, =1 if household resorted to credit loan in the year 

Topographic characteristics  

elevation Meter 

Climate variables  

winter_tem Winter monthly temperature (Celsius degree) 

spring_tem Spring monthly temperature (Celsius degree) 

summer_tem Summer monthly temperature (Celsius degree) 

autumn_tem Autumn monthly temperature (Celsius degree) 

winter_pre Winter monthly precipitation (millimeter) 

spring_pre Spring monthly precipitation (millimeter) 

summer_pre Summer monthly precipitation (millimeter) 
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autumn_pre Autumn monthly precipitation (millimeter) 

Regional dummies Red River delta, Northeast, Northwest, Northern Central, 

Southern Central, Central Highlands (the Mekong delta as base) 

Time dummies 2008, 2010, 2012, 2014, 2016 (2006 as base) 

 

The analysis includes a broad set of climate and other control variables suggested in 

the literature on land use choice (Fisher-Vanden et al., 2013; Mendelsohn, 2012; Seo & 

Mendelsohn, 2008a; Lesschen et al., 2005; Browder et al., 2004; van Ittersum et al., 1998; 

Walker & Homma, 1996). These variables include household characteristics, farmland 

characteristics, and socio-economic characteristics. Table 5.1 presents a brief definition of 

the variables. These variables are derived from the VARHS datasets. Unobserved 

heterogeneity across regions in terms of soil properties and agricultural policy may affect 

land use decisions. However, these data are not available to be included in this research. 

Instead, a set of region dummies is used to capture unobserved differences across regions. 

We derive the climate data with a high resolution of one-square kilometer from 

Worldclim version 2.0 (Fick & Hijmans, 2017). We do not include climate data for twelve 

months in the analysis for the reason that there is multicollinearity between monthly climates. 

Instead, this study uses seasonal averages of temperature and rainfall for the period 1970-

2000 to support the identification of heterogeneous climate impacts on land use allocation. 

Climate and agricultural production may vary across latitudes (Mendelsohn et al., 1994). We 

extract data on elevation with the same resolution on a commune-level basis using free 

spatial data from DIVA-GIS website.  

Table 5.2 provides a general picture of the land use across regions while Table 5.3 

presents the main statistics of independent variables used in the analysis. Cereals and 

permanent industrial crops are the most popular choices by Vietnamese farmers. In the Red 

River and Mekong River deltas where irrigation covers more than 70% of the cropping area, 

farmers maintain a high proportion of cereals of more than 65% in their total farming area. 
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Permanent industrial crops, including coffee, are the most popular choice by farmers in the 

Central Highlands where the climate is cool and stable. Cash crops are favored by farmers 

in the Central Highlands, Northwest, and Northeast where the average temperatures are 

lower than the national averages. Annual industrial crops have higher proportions in 

locations with hotter climate and less rainfall such as the Northern Central and Southern 

Central. The Mekong River delta and the Central Highlands are also homes to fruit trees as 

these regions exhibit high proportions of farmland allocated to fruit crops. Land 

fragmentation is pervasive as an average household cultivates 4.2 different plots (Table 5.3). 

There exist systemic differences in seasonal climates as the 30-year averages are different. 

There has been little rainfall in the winter (34 millimeters per month) while the summer has 

been experiencing the highest precipitation but with much volatility across regions.  

 

Table 5.2. Land use share for crops, by region (%) 

Region Cereals 
Cash 

crops 

Annual 

industrial crops 
Fruit 

Permanent 

industrial crops 

Red River 81.18 6.88 7.15 2.90 1.90 

Northeast 74.02 11.08 7.24 2.15 5.52 

Northwest 77.70 13.52 2.91 3.12 2.76 

Northern Central 62.73 11.72 10.80 9.34 5.41 

Southern Central 63.57 9.51 10.78 9.61 6.54 

Central Highlands 38.02 11.83 3.89 9.76 36.49 

Mekong River 65.27 5.45 10.31 12.91 6.07 

Total 63.87 9.85 7.20 6.67 12.42 
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Table 5.3. Statistics of variables 

Variable Mean Std. Dev. Min Max 

Household characteristics   
hh_size 4.49 1.84 1.00 16.00 

head_age 52.27 13.10 16.00 99.00 

head_edu 6.76 3.73 0.00 13.00 

head_sex 0.82 0.39 0.00 1.00 

born_in_commune 0.81 0.39 0.00 1.00 

ethnic 0.60 0.49 0.00 1.00 

remittances 5.93 20.56 0.00 0.59 

Farm land characteristics    
no_plots 4.21 2.89 1.00 25.00 

farm_size 8.28 13.41 0.25 21.03 

irrigation 0.71 0.4 0.00 1.00 

tenure 0.62 0.44 0.00 1.00 

Socio-economic conditions   
extension 1.34 2.07 0.00 57.00 

population 550.46 711.13 35.00 2,182.00 

credit 0.59 0.49 0.00 1.00 

Topographic condition    
elevation 209.77 273.51 0.00 1,188.80 

Climatic conditions    
winter_tem 19.63 3.16 11.78 26.33 

spring_tem 24.73 1.94 18.62 29.16 

summer_tem 27.38 1.95 20.91 29.67 

autumn_tem 24.31 1.63 18.49 27.63 

winter_pre 34.07 30.93 11.14 128.59 

spring_pre 94.36 26.5 37.62 146.95 

summer_pre 235.25 77.34 87.89 433.55 

autumn_pre 198.59 85.98 64.59 417.76 
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5.4. Estimation results 

 The estimation of the system of land use equations is performed on the household-

level panel data using Equation (5.1) with a set of time dummies and climate interactions. 

Albeit small, the panel evidence suggests within-household variations in crop shares across 

years. These variations lend credence to the need to control for time-varying factors 

associated with land use decisions by farmers suggested by Mendelsohn (2012). Our 

Fractional Multinomial Logit estimates show statistical significance of the estimates for 

these time dummies and interactions. We conduct a series of tests to determine whether the 

convention of assuming constant effects unobserved heterogeneity and homogenous climate 

climate interactions on crop choice is relevant for our analysis. Table 5.4 reports a series of 

tests using the Likelihood Ratio tests (LR).   

Table 5.4.  Testing for hypotheses on time-varying unobserved factors and climate interactions 

Null hypothesis 

Variable on 

which its 

coefficients are 

tested 

 Chi2 test 

(p-value) 

Value to be 

tested 
Cash 

crops 

Annual 

industrial 

crops 

Fruit 

Permanent 

industrial 

crops 

(1) Constant effect 

of unobserved 

time-varying 

factors on crops 

Time dummies Equality on 

each share 

159.90 

(0.000) 

62.46 

(0.000) 

154.46 

(0.000) 

253.04 

(0.000) 

(2) Uniform effect 

of unobserved 

time-varying 

factors on crops 

2008 Equality 

across shares 

56.41 

(0.000) 

2010 Equality 

across shares 

106.76 

(0.000) 

2012 Equality 

across shares 

184.61 

(0.000) 

2014 Equality 

across shares 

258.56 

(0.000) 

2016 Equality 

across shares 

293.97 

(0.000) 

(3) Homogenous 

climate interaction 

effect on crops 

Winter_tem x 

Winter_pre 

Equality 

across shares 

7.93 

(0.047) 

Spring_tem x 

Spring_pre 

Equality 

across shares 

11.39  

(0.009) 

Summer_tem x 

Summer_pre 

Equality 

across shares 

32.31  

(0.000) 

Autumn_tem x 

Autumn_pre 

Equality 

across shares 

4.14  

(0.246) 
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 The first test is on the assumption of constant effect of unobserved time-varying 

factors on each land use share which means the estimated coefficients of time dummies are 

equal for a particular share. The second test is on the hypothesis of uniform effect of 

unobserved time-varying factors across different shares. These two hypotheses are taken 

from previous crop choice analyses (Chatzopoulos & Lippert, 2015; Oczkowski & Bandara, 

2013; Wang et al., 2010; Seo & Mendelsohn, 2008a; Kurukulasuriya & Mendelsohn, 2007). 

The LR tests reject the null hypotheses at the conventional level. Therefore, the use of time-

dummies and allowing them to have different estimates in our Fractional Multinomial Logit 

model is expected to isolate the confounding effects of external changes out of climate 

impacts. The third test contrasts climate interactions across land use alternatives. The LR 

tests justify the significance of climate interactions in our analysis as they indicate 

heterogeneous climate interactions on crops in three out of the four seasons. 

Table 5.5 reports the QMLE estimates of the Fractional Multinomial Logit model 

controlling for unobserved time-varying effects and climate interactions. We set the first 

response outcome – the share of cereals – as the base outcome in the estimation process. The 

estimated coefficients for climate variables and their square terms are statistically significant 

for at least one seasonal climate indicating the non-linear response of crops to climate. The 

estimated coefficients of time dummies are strongly significant for most of the land use 

shares suggesting statistical influences of external changes such as market prices and 

agricultural policy on land use decisions in the studied period. Estimates for household 

characteristics also show statistical significance in land share equations. Increases in 

household size, age, education, and remittances are associated with higher proportions of 

farmland allocated to other crops rather than to cereals. Land fragmentation, measured by 

the number of farmland plots, in contrast, is found to induce land use shifts from annual 

industrial crops and permanent crops to cereal production. Better irrigation increases the 
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proportion of farmland allocated to cereals as the estimated coefficients of this variable are 

negative in all land share equations. 

Table 5.5.  Fractional Multinomial Logit estimates of variables 

Variables 

Cash crops 

Annual 

industrial 

crops Fruit 

Permanent 

industrial 

crops 

winter_tem -2.099 -2.959* -0.588 -0.790 

winter_tem square 0.040 0.035 -0.003 0.013 

spring_tem 0.494 -2.848 1.621 -0.489 

spring_tem square 0.006 0.071 -0.016 0.006 

summer_tem -4.583** -9.370*** 5.143 1.745 

summer_tem square 0.077* 0.150*** -0.090 -0.013 

autumn_tem 7.814** 7.636** 0.317 3.153 

autumn_tem square -0.151** -0.110 0.027 -0.033 

winter_pre -0.040 -0.101 -0.288*** -0.089 

winter_pre square -0.000 0.000** -0.001** -0.000 

spring_pre -0.024 -0.145* 0.142* 0.009 

spring_pre square 0.000*** -0.000 -0.000 -0.000 

summer_pre 0.010 -0.037 0.143*** 0.221*** 

summer_pre square -0.000 0.000 -0.000** -0.000*** 

autumn_pre 0.034 0.106** 0.123** 0.078* 

autumn_pre square -0.000** -0.000* 0.000 -0.000* 

winter_tem * Winter_pre 0.004 0.004 0.018*** 0.010** 

spring_tem * Spring_pre -0.002 0.006** -0.005* 0.001 

summer_tem * Summer_pre 0.000 0.002 -0.004*** -0.006*** 

autumn_tem * Autumn_pre -0.000 -0.003 -0.006*** -0.003* 

elevation 0.001 0.002 -0.001 0.003** 

hh_size 0.009 -0.049** 0.006 -0.003 

head_age 0.009*** 0.010*** 0.011*** 0.005 

head_edu 0.014 0.032*** 0.017 -0.001 

head_sex 0.013 -0.017 0.239** 0.200* 

born_in_commune 0.330*** -0.087 0.922*** 0.301** 

ethnic -0.060 0.498*** 0.218** 0.193** 

remittances -0.000 0.001 0.004*** 0.001 

no_plots 0.015 -0.004 -0.085*** -0.043*** 

farm_size -0.005 0.005 -0.009** 0.014*** 

tenure -0.071 -0.618*** 0.066 0.074 

irrigation -0.470*** -0.658*** -0.466*** -0.499*** 

extension -0.001 0.009 0.019 0.010 

population 0.000 -0.001*** -0.000 0.000** 

credit -0.080 -0.021 0.008 0.073 

I_2008 -0.850*** -0.970*** 16.815 0.558*** 

I_2010 -0.365*** -0.783*** 17.932 1.796*** 

I_2012 0.104 -1.123*** 17.660 2.020*** 

I_2014 -0.629*** -1.592*** 16.989 2.202*** 

I_2016 -0.676*** -1.450*** 16.778 2.490*** 

Constant -29.151 88.706*** -137.591*** -89.186** 

Regional dummies Yes 

Observations 11,829 11,829 11,829 11,829 

*** p<0.01, ** p<0.05, * p<0.1.  

(Standard errors are clustered at household-level to account for panel structure) 
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Owing in part to the normalization, interpreting the Fractional Multinomial Logit 

estimates is difficult. Moreover, the inclusion of the square terms of, and interactions 

between seasonal climates makes the signs and magnitudes of individual coefficients no 

longer fully represent the effects of each climate phenomenon. Therefore, we derived the 

average marginal effects of continuous predictors using Equation (5.7) and binary variables 

using Equation (5.8). Table 5.6 reports the estimated average marginal effects of one unit 

change in explanatory variables on land use shares. 

Table 5.6.  Average Marginal Effects of variables on land shares 

 Cereals Cash crops 

Annual 

industrial 

crops Fruit 

Permanent 

industrial 

crops 

winter_tem 0.091** -0.024 -0.090*** 0.007 0.016 

spring_tem -0.107*** 0.043** 0.072*** 0.013 -0.021 

summer_tem 0.086** -0.016 -0.038** -0.026 -0.006 

autumn_tem -0.153** 0.016 0.092*** -0.002 0.047 

winter_pre -0.008*** 0.001 -0.001 0.001 0.007*** 

spring_pre 0.000 0.000 0.000 0.000 0.000 

summer_pre -0.002*** 0.001** 0.000 0.001*** 0.000* 

autumn_pre 0.001* 0.000 0.001** 0.000 -0.002*** 

elevation 0.000* 0.000 0.000 0.000 0.000** 

hh_size 0.002 0.001 -0.003*** 0.001 -0.001 

head_age -0.002*** 0.001*** 0.001*** 0.000*** 0.000 

head_edu -0.003** 0.001 0.002*** 0.001 -0.001 

head_sex -0.017 -0.003 -0.003 0.011** 0.012 

born_in_commune -0.061*** 0.020** -0.013 0.047*** 0.008 

ethnic -0.036*** -0.013* 0.030*** 0.008 0.010* 

remittances 0.000 0.000 0.000 0.000*** 0.000 

no_plots 0.004*** 0.002*** 0.000 -0.004*** -0.002** 

farm_size 0.000 -0.001** 0.001 -0.001*** 0.001*** 

tenure 0.028*** -0.003 -0.039*** 0.006 0.008 

irrigation 0.098*** -0.026*** -0.034*** -0.015*** -0.023*** 

extension -0.001 0.000 0.000 0.001 0.000 

population 0.000 0.000 0.000*** 0.000 0.000*** 

credit 0.002 -0.008 -0.001 0.000 0.006 

 

While household size (a proxy for family labor) is not statistically significant for 

most of the crop shares, it is significant and negative for annual industrial crops. If the 

number of family members were to increase by one person, the proportion of farmland 

allocated to annual industrial crops would decrease by 0.3% (-0.003), holding other variables 

constant. Age of the household head is significantly associated with increases in the shares 
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for cash crops and annual industrial crops. Farmers with higher education are likely to 

allocate more farmland to annual industrial crops and fruit rather than to cereals. 

The proportions of farmland under cereals, cash crops, and annual industrial crops 

are likely to be lower for male-headed households although the estimated average marginal 

effects are not statistically significant. Being born in the current commune is expected to 

have effects on the choice of traditional crops in the commune. In comparison with migrant 

households, a born-in-commune household allocates a 6.1% less of their farmland to cereals. 

Ethnic Minority households spend a 3.6% less of their farming land on cereal production as 

it is well known that they are familiar with fruit and other permanent crops while Kinh people 

have a long tradition with rice farming. Remittances from household members are expected 

to increase investments in crops with longer horizons. However, the results show that 

average marginal effects are minimal on all land use shares. 

Farmland characteristics are found to influence land use choice given the Vietnam 

context. Land fragmentation is associated with lower proportions of farmland allocated to 

fruit and perennial industrial crops. A one-unit increase in the number of farmland parcels, 

in contrast, is associated with a 0.4% and 0.2% increase in farmland area allocated to cereals 

and cash crops, respectively. The results show no size-biases in land allocated to different 

crops as the marginal effects are minimal. Farmers may expect that future benefits from 

investments in long-term crops will mostly accrue to the landowner rather than to themselves 

(Knowler et al., 2001), improvements in land ownership are found to shift land use patterns 

towards high-value perennial crops. Improvements in irrigation, in contrast, are likely to 

shift the land use towards cereal production which requires better irrigation and is exposed 

to lower production risk due to short cropping time. The estimated average marginal effects 

of socio-economic conditions such as extension services, population pressure, and credit 

availability are minimal and not statistically significant for most of the land use choices. 
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The variables of our special interest are seasonal climates. Table 5.6 shows that the 

once precipitation and other factors have been controlled for, land use shares for fruit and 

other permanent industrial crops are less responsive to changes in temperatures as the 

average marginal effects are small and not statistically significant. As expected, the choices 

of cereals, cash crops, and annual industrial crops, in contrast, are very sensitive to changing 

temperatures. The effects of seasonal temperatures are highest for cereals. A one uniform 

increase in annual temperature (1ºC) is likely to be associated with an 8.3% reduction in 

farmland allocated to cereals, while the shares for cash crops and annual industrial crops are 

expected to increase by 1.9% and 3.6%, respectively. 

Once irrigation has been controlled for, the choice of crops is found to be less 

sensitive to precipitation than to temperature. Although the estimated average marginal 

effects of seasonal rainfalls are statistically significant for most crops, the estimated 

magnitudes are minimal. This insight is consistent with finding from Oczkowski and 

Bandara (2013) who found minor impact of rainfall on land allocation in Australia. A wetter 

winter is likely to induce the shift from cereals to permanent industrial crops and cash crops 

which prefer high humidity. A 1 millimeter increase in summer precipitation is associated 

with a 0.2% decrease in the area allocated to cereals. Farms in locations with wetter autumns 

are likely to choose cereals and tend to eschew permanent industrial crops. 

Looking at the distribution of seasonal climate effects, farms in locations with 

warmer and drier winters, and hotter and drier summers tend to choose cereals. Cash crops 

are favored by farmers in regions with colder and wetter winters, and cooler and wetter 

summers. Warmer springs and autumns are associated with increases in the share for annual 

industrial crops. Farms in wetter locations with warmer winters and cooler summers are 

likely to choose fruit trees. The production of permanent industrial crops does not require 
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much water but stable temperatures. Farmers in regions with warmer winters ad cooler 

summers tend to allocate their farming land to permanent industrial crops. 

5.5. Simulation of land use change 

 The previous section has illustrated how Vietnamese farmers have adapted to the 

changing climate in terms of crop choice. Changes in seasonal temperatures and 

precipitations are associated with different responses in terms of crop selection by farmers. 

Vietnam is expected to be among the countries hardest-hit by future climate change 

(Dasgupta et al., 2009). A report by the Ministry of Natural Resources and Environment 

(MONRE, 2009) indicates non-uniform changes in climate patterns. Annual temperatures 

are projected to increase by 0.4°C to 3.2°C between 2030 and 2100 while the increases in 

the winter and the spring are higher than those in the summer and the autumn. The Northern 

region will experience faster increases in seasonal temperatures. Regional and national 

averages of precipitation are projected to increase but with different patterns for seasons. It 

is, therefore, interesting to understand how Vietnamese farmers might adapt to the projected 

changes in climate patterns in terms of crop choice. 

In this section, we attempt to predict how Vietnamese farmers might switch crops in 

response to the projected climate changes developed by the Ministry of Natural Resources 

and Environment (MONRE, 2009) under the medium emission scenarios. We assume no 

significant changes in factors which can result in changes in the relative profitability of the 

studied crops. Rather, this simulation is an effort to measure how farmers might allocate 

their farming land in response to the projected climate scenarios. The ten-year evidence used 

in this Fractional Multinomial Logit model is assumed to be appropriate to predict future 

changes in land use allocations. In addition, we assume the average marginal effects for the 

observed ranges of climate variables remain constant in the future and use the estimated 

parameters from Table 5.5 for the simulation. We do not assume uniform changes in climate 
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patterns across seasons and regions. Instead, we allow seasonal climates to vary by region 

to better understand the effects of the projected changes in land use. Table 5.7 presents the 

results. 

Table 5.7.  Projected changes in land allocations, 2030 – 2100  (%) 

 Cereals Cash 

crops 

Annual 

industrial 

crops 

Fruit Permanent 

industrial 

crops 

Baseline (%) 63.87 9.85 7.20 6.67 12.42 

Fitted values  (%) 63.87 9.85 7.20 6.67 12.42 

 2030 

Red River delta -9.79 2.13 3.09 1.59 2.97 
Northeast -9.08 1.63 2.29 1.34 3.82 

Northwest -11.72 2.31 3.84 1.67 3.91 

Northern Central -9.75 2.14 4.47 0.48 2.66 

Southern Central -3.09 1.17 4.61 -0.15 -2.53 

Central Highlands -2.07 0.86 2.10 -0.19 -0.69 

Mekong River delta -4.02 1.16 3.54 -0.77 0.09 

Total -5.00 1.34 3.58 0.05 0.03 

 2050 

Red River delta -20.93 4.77 7.96 3.13 5.07 
Northeast -19.42 3.58 6.57 2.43 6.84 

Northwest -19.18 3.59 5.35 3.12 7.11 

Northern Central -18.93 4.62 9.18 0.99 4.14 

Southern Central -4.25 1.83 7.80 -0.37 -5.01 

Central Highlands -3.44 1.36 3.84 -0.49 -1.28 

Mekong River delta -8.17 1.80 7.36 -1.60 0.61 

Total -9.21 2.34 6.88 0.00 -0.01 

 2100 

Red River delta -35.56 7.59 11.56 5.54 10.87 
Northeast -35.81 6.44 10.41 4.93 14.04 

Northwest -37.71 6.86 10.30 5.96 14.58 

Northern Central -30.98 7.06 13.56 1.48 8.88 

Southern Central -12.84 4.66 17.70 -0.37 -9.15 

Central Highlands -8.92 3.25 8.14 -0.60 -1.88 

Mekong River delta -17.71 4.15 14.61 -2.23 1.18 

Total -19.36 4.89 13.64 0.36 0.47 
(Total changes in land use shares are area-weighted averages of the projected changes in regional 

land use shares)  

The projected climate changes in the short-term, 2030, are likely to induce a 5% shift 

of total farmland under cereals to mainly annual industrial crops and cash crops. The 

combined effects of further increases in seasonal temperatures and more severe shortages of 

rainfalls in the distant future, 2050 and 2100, are associated with large reductions in land use 

share for cereals. In 2100, the whole country is likely to experience a redistribution of 19.36% 
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of cereal area to annual industrial crops (13.64%) and cash crops (4.89%). The farmland 

areas under permanent crops are expected to witness minimal responsiveness. 

The distribution of climate impacts across regions indicates heterogeneous 

adaptation responses in terms of crop choice by farmers. The Central Highlands is 

characterized by a cool and stable climate. The expected increases in temperatures and 

rainfalls are not likely to result in significant changes in land use choice as the estimated 

impacts remain small over time. The non-uniform changes in seasonal climate in the 

Northern regions, including the Red River delta, the Northeast, the Northwest, and the 

Northern Central, are predicted to result in large reductions of farmland under cereals, 

ranging from 9% to 36% between 2030 and 2100. In contrast to the Central Highlands and 

the Southern Central where reductions in permanent industrial crops are expected, the 

reductions in cereals in the Northern regions are mostly distributed to long-term investments 

in permanent industrial crops and annual industrial crops. The Mekong River delta is the 

largest rice area of the country accounting for 50% of domestic rice production and 90% of 

export. The projected increases in temperature and reductions in precipitation in the long-

term are likely to induce large shifts from rice to annual industrial crops which are more 

drought-tolerant. 

The Vietnam government is concerned with food security given the rising demand 

for food and the declining food growth rate. According to the Resolution on national food 

security (No. 63/NQ-CP), Vietnam must keep at least 3.8 million ha of rice land to meet 

domestic and export demands in 2020. Rutten et al. (2014) highlighted that although this 

target would not be jeopardized in the short-term even in high climate impact scenarios, the 

conversion of paddy rice land into other uses would continue in the future. Our simulation 

of farmers’ behaviour in response to the projected climate change also confirms the likely 

conversion of cereal areas into other crop types in the future. 
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5.6. Concluding remarks 

 This empirical analysis employed a Fractional Multinomial Logit model to capture 

the responsiveness of Vietnam land use choice to changing climate. The model was 

estimated on nationally representative data on crop production. The results underpinned the 

importance of household and farmland characteristics on land use decisions. Age and 

education are negatively correlated with the shares of farming land allocated to cereals and 

are associated with higher shares for other crops. Ethnic Minority people are likely to 

allocate more farmland to perennial crops while Kinh people tend to maintain higher 

production of cereals. Land fragmentation is associated with the choice of cereals and other 

annual crops over perennial crops. Better irrigation is estimated to increase the share utilized 

for food production. 

 The allocation of farmland in Vietnam is found to be sensitive to climatic conditions, 

which is in line with empirical findings for China (Wang et al., 2010), Germany 

(Chatzopoulos & Lippert, 2015), South America (Seo & Mendelsohn, 2008a), and Africa 

(Kurukulasuriya & Mendelsohn, 2007). Seasonal climates exert heterogeneous impacts on 

land use shares for different crops. Increases in winter and summer temperatures shift the 

farmland towards cereals. Cash crops are preferred in wet locations with colder winters and 

cooler summers. Farms in locations with warmer springs and autumns tend to opt for annual 

industrial crops. The production of permanent crops including fruit trees and permanent 

industrial crops requires stable temperatures. These crops are preferred by farms in locations 

with warmer winters and cooler summers. The simulation indicates large shifts in total 

farming areas allocated to cereals in the period 2030-2100.  

 Vietnam agriculture is facing challenges given the predicted future climate changes. 

Agricultural land is predicted to decline by 13% as a result of a one-meter increase in sea 

level (Dasgupta et al., 2009). Our simulation also indicates large shifts in land use shares 
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from cereals towards other crops in the Red River and Mekong River deltas which are the 

two rice bowls of the country. This underscores the need for the Vietnamese government to 

develop adaptation policies. Given the likely reductions in cereal areas, improvements in 

food productivity are vital to maintaining food security and export status. The designation 

of agricultural policy should also accommodate the likely changes in irrigation demand and 

investment requirements associated with the conversion of farmland across alternatives. 

 This analysis attempted to quantify the impacts of climate change on Vietnam land 

use choice. The interpretation of the results should be done with care as there are several 

caveats. First, the simulation of land use change was based on the hypothesis that climatic 

variables are the only ones that change in the future. Although this Fractional Multinomial 

Logit model was estimated on a broad range of crops in Vietnam, this analysis did not 

consider new crops that might be introduced into the crop portfolio. Second, we assumed no 

switching cost across crop types. This is not the case when farmers shift from cereals or other 

annual crops to perennial crops such as fruit and permanent industrial crops that require 

heavy capital investments. Further, the research did not take account of any prices effects 

associated with production changes. 
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Chapter 6. Conclusion of the thesis 

 

6.1. Introduction 

Vietnam has undergone an intensive transformation from a centrally planned 

economy to a market-oriented economy since the economic reforms in the mid-1980s. Yet, 

agriculture is still an important sector supporting employment and income for a large 

proportion of the population (General Statistics Office, 2016). Future prospects for 

improving agricultural productivity are potentially constrained as the easy part of the Green 

Revolution has been achieved. Vietnam is expected to be among the countries most affected 

by future climate change (Dasgupta et al., 2009). The small-scale production with low 

adaptation capacity makes it more vulnerable to changing production conditions. This thesis 

consists of four studies that investigated the dynamics of Vietnam agriculture under 

changing production conditions. The primary data for the three empirical analyses came 

from the Vietnam Access to Resources Household Surveys 2006 – 2016. 

The first study systematically overviewed the transformation of Vietnam agriculture 

during the second half of the twentieth century to provide a better understanding of current 

performance. It applied an historical approach to explaining the dynamics of agriculture, 

with an emphasis on the rice sector, and its future challenges. The study also sought to 

explain previous thoughts on regional discrepancies between the two important deltas of 

Vietnam. 

The second analysis explored the impacts of hybrid rice technology in Vietnam in 

the post-Green Revolution time. The Probabilistic Data Record Linkage method was applied 

to household survey data to generate a balanced ten-year panel for the study. The adoption 

of hybrid rice varieties was modelled by a probit model while a panel stochastic frontier 

model was estimated on a matched sample to shed light on the impacts of hybrid rice on 

productivity. The analysis contributed to the existing literature on productivity impact 
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assessment in the rice sector and provided inferences regarding the development of the 

Vietnamese rice technology. 

The third study quantified the economic impact of climate change on Vietnam 

agriculture. The Ricardian function was estimated from data on agricultural production of 

20 crops which have been typically produced across regions in Vietnam. In contrast to prior 

panel Ricardian analyses (Trinh, 2018; Fezzi & Bateman, 2015; Massetti & Mendelsohn, 

2011; Deschenes & Greenstone, 2007)  assuming uniform market shocks on households, our 

analysis allowed market shocks to have heterogenous effects on households with different 

crop portfolios across regions. The two-stage Hsiao method was applied to estimate the 

likely impacts of marginal and non-marginal changes in long-term climate. 

The fourth analysis captured the sensitivity of the Vietnam land use system to climate 

change. The Fractional Multinomial Logit model was employed to investigate the effects of 

climates on land use shares for different crops. This is the first crop choice model which 

allowed for heterogeneous price feedbacks on different land use alternatives when estimating 

the responsiveness of land use choice to changing climate. The heterogeneous impacts of 

climate conditions were allowed by proper classifications of seasonal climates. Nonlinear 

impacts of climate were taken into account. The analysis also took the heterogeneity of 

household farmland conditions into account by clustering the Fractional Multinomial Logit 

model to get better results. 

6.2. Key findings and policy implications 

6.2.1. Productivity impacts of hybrid rice seeds in Vietnam 

On-farm experiments have reported productivity gains from hybrid rice seeds. 

Significant amounts of funding have been allocated to imported hybrid rice despite several 

production failures. Our analysis is among the first hybrid rice assessments using panel data, 

and is the first hybrid rice assessment for Vietnam. The analysis provided a simple way to 
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address selectivity bias by combing the Propensity Score Matching with fixed-effects 

estimators. The stochastic frontier model allowed rice production technologies to differ to 

lend itself to further assessment of technology impacts on the base productivity, factor 

productivity, and technical efficiency.  

Key findings 

The adoption literature often emphasizes the importance of farmland and household 

characteristics in explaining adoption of agricultural innovations (Pannell & Zilberman, 

2020; Norton & Alwang, 2020; Montes de Oca Munguia & Llewellyn, 2020; Llewellyn & 

Brown, 2020; Chavas & Nauges, 2020; Doss, 2006; Sunding & Zilberman, 2001; Feder & 

Umali, 1993; Feder et al., 1985). This analysis showed little evidence of self-selection into 

hybrid rice of farmers. In fact, the results indicate no size-biases in the adoption of hybrid 

rice seeds as they are a lumpy technology that is easy to adopt on a small scale with minimal 

start-up cost and no fixed investment. Land fragmentation, in contrast, is associated with a 

higher propensity towards hybrid rice seed application. Market-oriented farmers tend to 

eschew adoption of hybrid rice as a result of perceived lower quality and marketability. 

Previous assessments have reported significant yield advantages of hybrid rice seeds 

(Food and Agriculture Organization, 2014; Aldas & Hossain, 2003; Jin et al., 2002; Huang 

& Rozelle, 1996). However, our analysis shows that although the responsiveness of hybrid 

rice seeds is higher for some certain inputs, hybrid rice provided a lower base productivity 

for Vietnam between 2006 and 2016. The results also suggest an inward neutral technology 

shift due to the replacement of traditional transplanting. Although technical efficiencies are 

higher for adopters of hybrid rice varieties, average technical efficiency of Vietnam rice 

farming is still low. An estimate of technical efficiency score of 72% suggests a 39% 

managerial gap. Our stochastic frontier models indicate that the failure to address selection 
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bias is a source of biased estimates. Productivity impact assessments therefore should take 

into account selection on observables and unobservables. 

Policy implications 

Vietnam rice seed technology needs improvements in both productivity potential and 

quality of hybrid rice varieties. There is no size bias or self-selection in adoption indicating 

no need for diversified extension activities toward different groups of farmers. While hybrid 

rice seeds provided no productivity gains, the period 2006-2016 witnessed also a stagnancy 

in other farming technologies. The development of factor-bias technology is crucial for 

improved agricultural productivity and the release of agricultural labor into other sectors. 

Vietnam has the potential to improve rice productivity. An estimate of technical efficiency 

score of 72 % suggests a 39% managerial gap to be materialized. Improvements in extension 

services can be important to uplift Vietnam rice productivity. 

6.2.2. Impact of climate change on Vietnam agriculture 

This analysis made use of high-quality data from the Vietnam Access to Resources 

Household Surveys. The Probabilistic Data Record Linkage method was applied to generate 

a ten-year panel on crop income which was used as the dependent variable in the Ricardian 

analysis. Climatic and geographic data with high resolution were extracted to match with 

households’ location. The Ricardian model was estimated on the panel using the two-stage 

Hsiao method. In contrast to most previous panel Ricardian analyses assuming uniform 

market shocks across households, our Ricardian model allowed variations in agricultural 

markets to have differentiated effects on households with different crop choices. This allows 

better insights into how variations in climate conditions affect agricultural production. 

Key findings 

While the failure to account for heterogeneous price feedbacks produces biases to 

climate estimates, the consequences of ignoring climate interactions are even more severe 
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when estimating climate impacts for Vietnam. This finding is in line with plant physiology 

(Morison, 1996; Monteith, 1977) and the findings by Fezzi and Bateman (2015) for Great 

Britain. Ricardian analyses should, therefore, take interactions between climates into account.  

The Ricardian results highlight the nonlinear, seasonal role of changing temperature 

and precipitation. Rising seasonal temperatures are associated with losses to most regions, 

with spring temperature being the exception. Increases in summer precipitation are valuable 

to mitigate the negative impacts of rising temperature. The climate simulation indicates 

marginal losses to agricultural productivity, both in the short term and the long term. Regions 

with cool climates such as the Central Highlands and the Northwest are likely to be affected 

the most. The Red River delta, in contrast, is hardly affected at all. 

Policy implications 

Although changing climate is expected not to cause severe losses, variations in 

seasonal climates exert production risks especially for mountainous regions with cool 

climates and lower irrigation coverage. The development of irrigation system is expected to 

reduce the vulnerability of agriculture to changing climate. 

6.2.3. Farm-level adaptations to climate change in Vietnam 

Previous Ricardian analyses have shown heterogeneous economic impacts of 

projected climate change on this agrarian economy (Trinh, 2018; Le et al., 2015). 

Quantitative assessments on how Vietnamese farmers have allocated their farmland in 

response to changing climate are absent for Vietnam. This analysis focused on how 

Vietnamese farmers have adapted to the changing climate by means of crop substitution. 

Estimated results were then used to predict changes in land use patterns in response the 

projected changes in short-term and long-term climate. 

Key findings 



133 
 

 Our Fractional Multinomial Logit model confirms the significance of heterogeneous 

market shocks and climate interactions on land use alternatives. Adaptation analyses, 

therefore, should take potentially differentiated effects of these drivers into account when 

modelling the sensitivity of land use choice to climate. 

The analysis revealed the importance of household and farmland characteristics on 

the choice of crops in Vietnam. Age and education are negatively correlated with the shares 

of farming land allocated to cereals and are associated with higher shares for other crops. 

Ethnic Minority people are likely to allocate more farmland to perennial crops while Kinh 

people tend to maintain higher production of cereals. Land fragmentation is associated with 

the choice of cereals and other annual crops over perennial crops. Better irrigation is 

estimated to increase the share utilized for food production. 

 The Vietnam land use system is sensitive to changing climate. In other words, 

Vietnamese farmers have adapted to the current climate by means of crop selection for their 

farmland. Increases in winter and summer temperatures shift the farmland towards cereals. 

Cash crops are preferred in wet locations with colder winters and cooler summers. Farms in 

locations with warmer springs and autumns tend to opt for annual industrial crops. The 

production of permanent crops including fruit trees and permanent industrial crops requires 

stable temperatures. These crops are preferred by farms in locations with warmer winters 

and cooler summers. The projected climate changes are expected to induce large shifts from 

food production to other crops between 2030 and 2100 with a rate of between 5% and 19%. 

However, these expected land use shifts would not jeopardize the target of maintaining land 

use for rice production in the future. 

Policy implications 

 Improvements in irrigation system are likely to be effective in reducing the 

conversion of farmland under food production, especially in the autumn. In the long term, 
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improvements in the relative profitability of food production are decisive to maintain food 

production by farmers. These include improvements in productivity by means of agricultural 

technology, and output prices for farmers. 

6.3. Limitations and future research avenues 

The main objective of this thesis is to provide a comprehensive understanding of the 

dynamics of Vietnam agriculture and the changing conditions. Advanced technologies kept 

momentum for the dynamic adjustment of Vietnam agriculture. However, future sustainable 

development of Vietnam agriculture requires better technology development. Although the 

impacts of climate change seem not to be severe in the long term, Vietnam agriculture is 

expected to experience regionally and seasonally negative impacts resulted from changing 

temperatures and rainfalls. The findings of this thesis provide crucial implications for 

technology policy in the post-Green Revolution time as well as for adaptation strategy to 

cope with changing climate patterns. However, limitations are identified which generate 

avenues for future research. 

First, Chapter 3 focused on technology change and its impacts on the rice sector. Rice 

has been the traditional crop which accounts for most of the annual cropping area in Vietnam. 

The transformation of Vietnam agriculture is also associated with changing crop production. 

A more comprehensive approach to technology change in agriculture is, therefore, important 

to understand the driving factor of technology diffusion and productivity improvements. 

Second, the estimated impacts of climate on agricultural performance in Chapter 4, 

and on land use patterns in Chapter 5 did not take into account future changes in technology. 

Vietnam agriculture is undergoing transformation. Future technology advances may 

facilitate better adaptation by agriculture. Hence, the prediction of climate impacts on 

agricultural income and on land use may be overstated. 
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Finally, The Ricardian analysis in Chapter 4 implicitly measured the economic 

impacts of climate change given adaptation in terms of crop substitution. The estimated 

climate impacts are averaged across land use alternatives. It is, therefore, better to model the 

joint impacts of climate on land use change and on agricultural performance in a joint 

Ricardian framework. This will allow better understandings of the direct effects of climate 

change on crop production and the indirect effects on crop substitution. 
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